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1.0 INTRODUCTION 

This study was initiated in order to understand 

and measure quantitatively the response and through-put of 

a small time shared computer system. The operating system 

utilizes the concepts of demand paging and virtual memory. 

It is difficult to assess the merits of a particular operating 

system without having precise measurements by which the 

effectiveness of certain strategies can be compared with 

those employed by other operating systems. Memory management 

strategy is an important part of the overall operating system 

design. Also user file organization has a marked effect on the 

average access time to secondary storage. Any model of the 

operating system must describe these two activities in detail 

in order to give close agreement with measured results on the 

system and in order to predict the effects of changes in imple­ 

mentation of these two activities. In particular one would like 

to know the trade-offs involved in increasing memory size, 

increasing disk speed and in increasing memory speed for a small 

computer system. 
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This study describes the results of measurements on 

a virtual memory multi-programming operating system designed 

for an 8K, 16-bit word computer with 376,000 words of secondary 

storage.(l) A simulation model was developed to gain insight 

into the operating system and hence point out the bottlenecks in 

the system. The findings were then used as aids in the evaluatior 

of and in making refinements to the operating system. The disk 

allocation scheme as described in (1) has been altered considerab: 

to avoid some of the bottlenecks pointed out by the simulation 

model. This resulted in a three-fold increase in through-put. 

Through-put here is defined as the percentage of total elapsed 

time during which the CPU is executing a user's program. The new 

disk allocation scheme was built into the simulation model. This 

model pointed out some more bottlenecks. Improvements in core 

management and file organization resulted in a further gain of 

about 30% in through-put. CPU utilization, system response, disk 

activity and system overhead are some of the parameters which wer1 

monitored in the simulation and actual system measurements. 

Close agreements of the simulation model results with 

the actual system measurements was achieved over a wide range of 

system parameters. The model was further extended to study the 

results of increasing memory size, increasing disk rotational 

speed and decreasing memory cycle time. These results were then 

incorporated into an economic model of the system pointing ()Ut 

the cost effectiveness of the improvements. 
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2.0 SYSTEM DESCRIPTION 

The basic system hardware configuration consists 

of a Honeywell DDP-516 computer with 8192 words of 16-bit, 

0.96 µsec core memory. Secondary storage consists of a fixed 

head, 64-track disk (~376,000 words) operating at 1800 RPM and 

connected to the computer via a fast DMA (Direct Memory Access) 

channel. Most of the I/¢ devices are connected to the computer 

via a serial I/0 bus(2) as shown in Figure 1. These consist of 

fnur rn()deJ 103 Dataphone data sets, a PDP 8/I computer and a 

special memory interface. A control teletype and a 201 Dataphone 

data set are interfaced separately to the computer I/¢ bus. 

Software for the system consists of 4000 words of systff 

code (the operating system) and many segmented user programs, 

which are brought into the 4000 word area of user core on demand. 

Each user has a thread-save block to store all his temporary data 

which allows all code to be re-entrant. Programs are broken up 

into segments of various lengths. Data is broken up into segment 

11f 64 words each to keep the core requirements of each user down 

t,, a r-e a e oria b Le amo un t , The system code handles virtual memory 

addressing, core management, I/¢ processing, thread changing 

(changing control from one user to another) and the allocation 

of all system resources. 

The main user programs currently supported by the 

system include: 

Text Editor - for creating and updating files. 

Assembler - to assemble program segments. 

THAC - a character string manipulating language. 
FSNAP - an interpretive calculating language. 
H0P/\K - a relocatable octal debugging pac ka ge , 
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and several programs for communicating with the GE-635 computer. 

The operating characteristics of all of these programs depend 

very much on the file organization and core management strategies 

implemented in the operating system. If the file.which 

the user is accessing is small, the response time to the user's 

typed-in request for service is negligible regardless of the 

number of users on the system. However, as the length of a 

user's file increases, the time to access a file will increase 

as some part of his file may be off on secondary storage. Thus 

lt is important that his files be organized for minimal access 

time with or without other users on the system. One of the 

purposes of the present simulation study is to gain insight 

into the factors affecting the file access time. 

3.0 MEASUREMENT TECHNIQUES 

The evaluation parameters which one employs to 

characterize a multi-programming system can be divided into 

two categories. First of all there are the global system 

capacity parameters including through-put, response time and 

cost per operation. Then there are the local parameters which 

are much more dependent on the individual hardware and software 

configurations. These include: 

(1) 

(11) 

(111) 

average secondary storage access time 

average data transfer rate 

average instruction execution time 



- 5 - 

(iv) average executive system processing time 

(v) average user processing time 

(vi) effective busy time of processor 

and (vii) hardware utilization - processor 
- memory 
- secondary storage. 

There are various techniques which can be used to 

measure these parameters depending on the accuracy with which 

one wishes to measure the parameters and whether one is more 

interested in global than in local parameters of the system. 

In this study we are concerned with studying the system in 

some detail and hence are interested in measuring both types 

of parameters. 

Characteristic of all such computer system studies, 

one must measure the parameters of interest under a given load 

on the system. One technique often employed ls the stimulus 

approach in which a certain Job is entered into a mix of running 

programs and the response time noted. However, this method 

suffers from the fact that the results are not reproducible and 

the effects of system changes are difficult to detect. The use 

of a benchmark task is more rewarding. Such a task can be run 

under a new version of the operating system and the measured 

parameters compared directly with those obtained on an earlier 

version of the operating system. The benchmark task also has 

the advantage over using a normal mixture of jobs in that the 
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fluctuations in the nature of the load do not wipe out the 

effect to be measured. The use of benchmark tasks is 

emphasized in the present study. 

Three major techniques were employed to measure the 

system parameters. Hardware was installed on the present system 

in the form of megacycle clocks and external meters to monitor 

various system parameters. The meters were used to monitor 

average CPU utilization, user time, system time and idle time 

by indicating the corresponding clock counting rates. Other meter 

wtire used t,) Indicate such parameters as the average disk word 

transfer rate and the number of users logged into the system. 

Software was used in conjunction with the megacycle 

clocks to turn them on or off at the appropriate times in the 

operating system to measure time spent in various sections of 

system and user programs. A clock monitor program keeps track 

of the total time spent in various programs and types out the 

accumulated results on command. The monitor program itself only 

takes up about 128 words of core memory and produces no appreciabl 

l.n t.e rf'e r e nc e wt t.h the operation of the system. 

The use of hardware and software techniques allowa 

one to measure the parameters of the present operating system 

but does not allow one to predict the results of changing some 

features in the operating system. For this reason a simulation 

model was built to allow for extrapolation beyond the present 
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system configuration. A benchmark task was used to measure 

the system response and throu~~-put as a function of various 

changes in the operating system. The particular task chosen 

was one which exercises many of the tasks of the text editor, 

namely, it creates a file of 30,000 characters, rewinds the 

file and then deletes the file. 

3.1 A Note on Simulation 

High level simu1ation languages have been developed 

to model computer systems, e.g.,GPSS(3),SIMSCRIPT(4), SIMULA(5), et 

However, the execution times of simulation model programs written 

in these higher level languages tend to be long and their 

versatility leaves something to be desired. For example, we 

found that to run a typical model in SIMSCRIPT required three ., 
w 

ti.mes as long as the same model written in FORTRAN. Other systems 

analysts have come to the same conclusions regarding higher level 

simulation languages. The universality and versatility of 

FORTRAN make it a good language upon which to build a simulation mo, 

The system model 1s based on a list of discrete 

events which occur when the system changes state, e.g., from 

user to system, system to idle, etc. Entities which are created, 

e.g., users, change their attributes at each change of state. 

The system parameters being monitored require updating at each 

change of state. In the model the angular position of the disk 

is defined as a linear function of the simulated running time 

of the model. Such close attention to detail was found to be 
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necessary in order to closely describe and model the system. 

Benchmark tasks are used to exercise the system both in the 

simulation model and on the DDP-516 computer system to permit 

comparison of the simulated and the measured results. It is 

important to generate tasks which are long enough to collect 

meaningful statistics. 

4.0 INITIAL OPERNfING SYSTEM 

A fairly detailed description of the operating system 

will be presented below in order to introduce the parameters of 

interest in the model. A more detailed discussion can be found 

in (1). Memory management is one of the most important aspects 

of the operating system. Program and data segments are brought 

into core on demand. When core memory becomes fully occupied 

and space is required for another segment, the segment table is 

searched for data blocks or program segments which are not 

presently in use and can be pushed out. One of the important 

variables involved in this core request is the minimum core 

request, MINCR, i.e., the minimum amount of core space freed up 

when core is full. Freeing up a certain minimum amount of core 

reduces the overhead for the next request for core space but 

increases the probability of pushing out a segment which may 

be required soon. This is a trade-off which will be investi­ 

(!J3.ted. Freeing up core involves marking as holes those data 

blocks or program segments which have not been updated slnce 

bei.ng brought into core and putting on a disk queue those segments 
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which have been altered. The segments on the disk queue are 

written out on disk under control of the interrupt routine. 

When the sum of the holes 1s great enough to satisfy the space 

requirements for the segment, core is shifted down over the 

holes and the segment j_s read in from disk or a new data 

segment created, as the case may be, at the top of the 

currently used core. 

Program segments typically vary in size from 208 to 

14008 words with a majority of the segments being less than 2008 
words long. User files are organized as linked data segments 

each 1008 words long. Each segment contains 118 characters 

( 2 per word). The data segment size, 1YI1SGSZ, is another sye t em 

variable which can be optimized for the system. However it is 

desirable to keep segments small to allow for a better mix 

of users. The value of this parameter will be discussed in some 

detail in a subsequent section. 

About 376,000 words of disk storage are available for 

user files and programs. Disk is organized as shown in Figure 2. 

The disk name table contains the names of all the program segments 

on disk with a cross-reference pointer to the corresponding ID 

table entry. The disk ID table contains the disk address of 

each program or data segment on disk. All unused ID's are so 

indicated. The ID table entry also contains the size of the 

segment. The important aspect of this disk allocation scheme 
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is that to read a segment from disk, two disk accesses 

are required, 

(1) read ID table entry to get segment size and 

disk address 

(2) read segment down from disk. 

To write a new segment on disk requires five disk accesses, 

(1) read ID table entry (as two entries are made per 

8-word sector) 

(2) write changed ID table entry on disk 

( 3) check disk _image of ID table entry 

(4) write s e gmerrt in allocated disk space 

(5) check disk image of segment. 

Another aspect of this scheme is the number of disk accesses 

required to allocate and de-allocate ID's. Initially all 

available ID's are put on a chained queue which is organized 

on a last in first out (LIFO) basis. Allocating an ID requires 

\,ne disk access t0 read the next ID from the end of the chain. 

To de-allocate an ID requires three disk accesses similar to 

the first three steps in writing a segment on the disk. This 

process takes a minimum of two disk revolutions as the same disk 

sector must be accessed three times. During this time all other 

ID table references by other disk queue entries are blocked to 

prevent multi-programming collisions and also since all ID table 

entries are read into a fixed location in the system. 
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A disk queue is maintained containing all of the 

disk access entries which require service. Each time this 

queue is serviced, the entry with the least latency is given 

priority. There is of course a certain minimum disk delay 

necessary, DSKDEL, before an entry can be serviced, This is 

the time required to search the queue for the entry with the 

least latency after the disk angular position has been read. 

DSKDEL is another variable which can be optimized for the system. 

If the entry with the least latency cannot be serviced, it is 

blocked and the next best entry is given service. Of course 

the greater the number of blocked entries, the less efficient 

the disk queue server will be. When all entries are blocked, 

they are all immediately unblocked and the next best entry 

1s serviced provided it is not again blocked. One reason for 

a block occurring is that a disk - user core transfer cannot be 

initiated while a core shift is taking place. Another reason 

is that only one ID table entry can be examined at a time. Thus 

for a write ID table entry operation, a disk table flag is set 

up after the entry has been read from disk so that another ID 

table entry cannot be written over the previous entry while it 

is being set up for the subsequent write and compare operations. 

Thus the disk table flag is up for at least two complete disk 

revolutions. 
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4.1 Simulation and Measurement Results for Operating 
System l (O.S. #1) 

A benchmark task consisting of creating, rewinding 

and deleting a file of 30,000 characters was run on the system. 

A simulation model was also run for comparison. The results are 

summarized in Table 1. The column headings are as explained 

below: 

TIME - total elapsed time taken to perform the benchmark 
task (in seconds). 

TIDL - time during which the CPU is idle. 

TUSR - time during which the CPU is active in the 
user's program. 

TSYS - time during which the CPU is active in system 
programs, e.g., virtual addressing, space finding, 
servicing disk queue, etc. 

TMDUT - time during which the disk is being utilized 
including setup, access and transfer time. 

TMDTF - time during which the ID disk table entry is 
in use and another ID table entry cannot be read 
from disk. 

TMDSF - time during which a disk sensitive task is in 
progress and core shifts are inhibited. 

TMCSF - time during which core shifts are in progress and 
a disk sensitive task cannot be initiated. 

TMDDP - time during which some disk queue entries are 
blocked (these entries are re-enabled only when 
no others are available for service). 

TMIDF - time durlng which an ID is being allocated to or 
de-allocated by a user (during this time other 
users are prevented from doing the same). 

NCSFT - number or core shifts which occurred during the 
monitored time. 
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NCTHD - number of thread changes which occurred during 
the monitored time (this is the number of times 
which the CPU was reassigned to another user). 

NDSKI - number of disk accesses which occurred during 
the monitored time. 

The close agreement of the simulated results with the 

measured results for the various number of users on the system 

indicates that all of the gross features of the operating system 

have been included in the simulation model. It is quite evident 

from the results that too much time is being spent by the CPU 

in the idle state. Even by dividing the total work up between 

five users, only a 25% saving in total time is achieved. 

Basically the reason for the large percentage of idle time is 

that too many disk accesses are required for one operation, e.g., 

five accesses to write a segment on disk. The cause of the poor 

mix of jobs 1s that some disk accesses inhibit the initiation of 

other similar types of accesses until the results of the first 

disk access have been altered, rewritten on disk and compared at 

least two complete revolutions of the disk later. 

More specifically the bottlenecks in the operating 

system are as follows. The time during which the disk 

table entry is in use, TMDTF, is rather long. During this time 

other disk queue entries requiring the use of the disk table 

entry (eight words in core memory) are blocked. One possible 

solution to this bottleneck would be to allow for multiple 
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disk table entries to be read into core. A simulation run 

showed that this would reduce the time for the benchmark task 

from 79 seconds to 55 seconds. However, the modification in 

system program required to implement this change would contribute 

to the system overhead and still would not eliminate the basic 

reason for excessive idle t Lme , i.e., too many disk accesses. 

The best possible solution would undoubtedly be provided by 

avoiding the use of an ID table on disk altogether and having 

some form of a disk table permanently in core memory. This 

would eliminate the need for many of the disk accesses. 

The time during which an ID is being allocated or 

de-allocated is also a large fraction of the total benchmark 

task time. Dur:lng this time a.11 other users are prohibited from 

allocating or de-allocating ID's and also from using the disk 

table entry in core. This again causes some disk queue entries 

to be blocked and prevents the disk queue from being serviced 

very efficiently. A solution to this bottleneck would be to 

read or write a block of say 64 ID's at a time and use these 

64 for allocation and de-allocation until one runs off either 

end of the block of ID's. This would greatly reduce the number 

of disk accesses required for allocating and de-allocating ID's. 

However, again thls is only a "half-way" solution and does not 

completely eliminate the possibility of having blocked queue 

entries. The results of the two major bottlenecks discussed 
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above, namely the limitation to the use of one disk table 

entry at a time and the multiple disk accesses required to 

handle allocation and de-allocation of ID's, can be seen in 

TMDDP, the time during which some disk queue entries are blocked. 

Another major bottleneck is presented by the core 

management strategy. As discussed previously, when core space 

is required for a segment and no space is available at the top 

of the currently used core_, the segment table is searched for 

eegments which can be thrown out. Those which must be rewritten 

on disk are put on the disk queue and serviced according to the 

least latency principle. Meanwhile the segments which remain 

in core are shifted down to make room at the top for the new 

segment. However core cannot be shifted while a disk sensitive 

task is in progress. This turns out to be at least 25% of the 

time. Similarly a disk sensitive task cannot be initiated 

while core is be::tng shifted down. 1rhese conflicts tie up 

memory unnecessarily and hence diminish the through-put of the 

system. A good solution for this bottleneck (which was later 

implemented) is to shift core only when absolutely necessary, 

i.e., put the new segment in an existing hole in the core map. 

However, this solution would only be effective if the probability 

of finding a hole of the right size were high. Such is not the 

case in operating system 1 as there are no restrictions on the 

size of the segments. 
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Some i.mprovements were implemented in the existing 

operating system. A simulation run demonstrated that the 

response time for the benchmark task previously described with 

one user could be improved from 79 seconds to 70 seconds by 

randomizing the allocation of the ID's for the data segments. 

This can be achieved by putting the available ID's on the chain 

of ID's in a random order. An actual test run on the system 

gave close agreement with the simulation results. Another 

improvement was achieved by modifying the disk queue servicing 

strategy. Now all blocked entries are re-enabled immediately 

before looking for the next best disk queue entry to service. 

This reduced the response time for the same benchmark task by 

another four seconds. 

However, the improvements made are only minor ones. 

Only up to a 15% saving in response time can be made. The fact 

remains that there is too much idle time as too many disk accesses 

are required to perform a basic operation. The disk queue cannot 

be serviced very efficiently as one queue entry may require 

several disk accesses before another entry can be serviced. 

Also the bottleneck caused by the inhibition of core shifts 

while a disk sensitive task is in progress remains. 

5.0 MODIFIED OPERATING SYSTEM (o.s. #2) 

It was obvious that a radical change in the disk 

organization was necessary to improve the response of the system. 

Therefore, the disk storage area was reorganized as shown in 

Figure 3, The number of possible segment sizes has been reduced 
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to eight, all multiples of 1008 words ranging from 1008 to 

1400
8 

words. Now there is no longer a dlsk ID table kept up 

on disk, but a disk map is kept in core using one bit to indicate 

whether or not each block of 64 words is allocated. The ID 

cf each program and data segment contains the actual disk address 

at which the segment is physically stored on disk and the segment 

size. Thus to read a segment from disk requires only one disk 

access (compared to two previously) and to write a segment require 

only two disk accesses (compared to five previously), one to write 

the segment and another one to perform the disk compare operation. 

To allocate or de-allocate an ID now requires no disk accesses 

compared to one and three, respectively under the old operating 

system. Now there are no longer any conflicts in servicing a dis1 

queue entry as it is impossible to have a blocked entry. The 

process of allocation or de-allocation of an ID no longer inhibit~ 

the allocation or de-allocation of another ID. Hence the disk 

queue can be serviced very efficiently. 

Some measurement and simulation results for 0.S. #2 

are shown in Table 2. These can be directly compared to those 

for o.s. #1 as listed in Table 1, It can be seen that the 

response time has been reduced by at least a factor of 3 over 

the initial version of the operating system for the corresponding 

number of' users. This can be attributed almost directly to the 

fewer disk accesses required to perform the benchmark task. The 

t1.me spent by the CPU in system routines has also been cut by 

a factor of two from about 6 seconds to 3 seconds. The user tim'"~ 

o f course remained constant at about 5 seconds, As evidenced by 
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the fewer number of core shifts which occurred under O.S. #2 

the core management strategy has been changed in this operating 

system. SegJ11ents brought down from disk or created for the user 

are put in existing holes of equal size if possible to minimize 

the number of core shifts required. The probability of finding 

a hole of the proper size is now relatively high as all segments 

are a multiple of 64 words in size. 

One of the most important advantages of this second 

operating system 1s the fact that users now mix much better. 

Dividing the benchmark task up between five users cuts the total 

response time by a factor of about 2 compared to a factor of 

about 1.3 in the initial operating system. This can be attributed 

to the fact that disk queue entries can now be serviced effectivelJ 

according to the least latency principle. 

5,1 Further Improvements to O.S. #2 

Two more improvements were implemented in operating 

system #2 on the basis of encouraging results projected by 

simulation runs. By randomizing the order in which the ID's 

are allocated, a 30% improvement in response time was projected 

for 1 user executing the 30,000 character file benchmark task. 

This was borne out by a run of the same benchmark task on the 

system. A random allocation of ID's seems appropriate for this 

system as the files must be accessed in both directions, forwards 

and backwards. 
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The second improvement made was to make the core 

management strategy more efficient. In the first operating 

system a core shift was required whenever space was needed for 

a segment and core was fully occupied. In the second operating 

system a core shift was required only when an exact match could 

not be found between an existing hole size and the requested 

segJnent size. A further improvement was now implemented in 

which a segment was placed in consecutive holes if possible 

to fulfill the space requirement. A set of simulation runs 

were performed to study the effects of the change in core 

management strategy. The simulation model was run for 

60 seconds with three users on the system repeating the 

benchmark task outlined earlier. Typical runs indicated that 

the number of core shifts during a 60 second period would be 

reduced from 250 to l+O with the change in strategy from core 

shift only to core shift only if no exact match found and from 

40 to l with the change in strategy from core shift only if no 

exact match found to core shift only if not enough consecutive 

hole space exists. Corresponding to these figures the time spent 

by the CPU in the user state typically increased from 19 sec. to 

24 sec. and from 24 sec. to 27 sec. respectively. This amounts 

to a dramatic reduction in the number of core shifts required to 

manage core and an almost 50% increase in throughput for the 

system. Needless to say this improvement in core management 

strategy was implemented in the operating system. 
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Table 3 lists the results of simulations and 

measurements for the improved version of O.S. #2 for the 

same benchmark tasks as used to obtain the numbers in 

Tables 1 and 2. The statistical data portrayed in Tables 1, 

2 and 3 bring out some of the important features of the 

operating systems under study. In all of the benchmark tasks 

monitored for the various versions of the operating system, 

the user time is of course constant but the system overhead 

time for the second operating system is down by a factor of 

two from that for the first operating system. For the improved 

version of O.S. #2 the system time is decreased somewhat more. 

Most important of all, the idle time for the improved version 

of O.S. #2 has been reduced by a further 40% over the factor of 

four improvement of O.S. #2 over O.S. #1. Divid:1ngthe benchmark 

task up between five users has further decreased the response 

time from 12.7 seconds to 10.3 seconds for the improved version 

of o.s. #2. This is a measure of how well the users "mix" or 

share resources in the multi-programming environment. The 

improvement in core allocation strategy has all but eliminated 

the need for core shifts. This is much more important in O.S. #2 

than in O.S. #1 as in O.S. #2 almost all disk transfers are disk 

sensitive tasks and the disk is being utilized a large fraction 

of the time. Thus there 1s a much smaller probability of having tc 

inhibit disk activity due to a core shift in progress or vice vers: 
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of having to inhibit a core shift due to a disk sensitive 

task in progress. The disk utilization time has been reduced 

considerably by the implementation of random ID allocation. 

This indicates a smaller average disk access time and more 

effective servicing of the disk queue entries. The total time 

to process a task or a number of users is very dependent on 

the efficiency of the disk handler routine. 

The results for the average disk access time and the 

average word transfer rate for the various operating systems 

studied are summarized in Figures J.4 and 5 respectively. The 

average disk access time decreases quite rapidly as a function 

of the number of concurrent users for O.S. #2 and even more so 

for the improved version of O.S. #2 but is almost a constant 

for O.S. #1. Similarly the word transfer rate to and from disk 

under operating system #2 increases quite satisfactorily as the 

number of simultaneous users increases. However, for O.S. #1 

the word transfer rate is almost insensitive to the number of 

concurrent users. Clearly O.S. #2 and even more so the improved 

version of O.S. #2 handle the disk queue much more effectively 

than O.S. #1. Users "mix" or share system resources much more 

efficiently under operating system #2. 

6.0 SOME TWO-LEVEL MEMORY CONSIDERATIONS 

A two-level memory hierarchy has certain limitations 

which must be taken lnto account in order t<J make E!'f1c 1 e n t; 

use of secondary storage. The access time of a two-level 

memory structure is given by: 
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t = f(l+ar) 

where f - access time for the fast memory, 

r = ratio of access time of the slow memory 
to that of the fast one, and 

a = fraction of all accesses that must be made 
to the slow memory. 

For the Honeywell DDP-516 system under discussion, f ~ 1 µsec 

and r .'.:!:: 10 msec/1 µsec = 10,000 for a moderate number of 

users on the system. It is difficult to get a to approach 

1/10,000 for a system with only 4K words of user space. Thus thE 

average access time for this memory structure cannot approach 

that of the fast memory. 

The utilization factor of a disk can be defined as: 

t u = --- 
t + d 

where d - dead-time due to rotational latency, and 

t = data transfer time. 

For an average number of requests on the disk queue N for a 

disk with a time T for one rotation of the disk, 

d = __ 't'_ 
N + 1 

To transfer a block of data (64 words) from disk requires, 
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For N = 9, the disk utilization factor is in the order of 

10%. The maximum word transfer rate from disk, i.e., the 

bandwidth of disk is 5880 x 30 = 176,400 words per second. 

This compares with a core bandwidth of about 1 million words 

per second. Even with five active users on the system the 

9,200 disk utilization factor is only about 176,400, i.e., slightly 

greater than 5%. This corresponds to an average number of 

requests on the disk queue of about six. 

6.1 Discussion of Critical System Parameters 

There are certain system parameters which can be 

optimized for an efficient operating system. The disk delay 

(DSKDEL), i.e., the time to determine which is the next disk 

activity to initiate for a minimum access time, is one such 

parameter. Both simulation runs and actual runs on the system 

indicate that the best value for this parameter is about 

20 sectors (8 words per sector). As shown in Figure 6 the 

through-put of the system as measured by the user time forms 

a broad maximum in the region of DSKDEL = 20. This corresponds 

to Just slightly more than the average processor time taken to 

search the disk queue. A simulation run assuming a hardware 

queuer and server demonstrated that the through-put of the 

system could be increased by about 8%. 

A second parameter which can be optimized is MINCR, 

the minimum core request when core space is required for a 
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segment. Then when say 128 words of core are required for 

a segment, a minimum of MINCR words of core are freed up if 

possible. The optimum value of this parameter was found to 

be about 1024 words for good response and through-put in the 

types of tasks simulated in this study. However, the optimum 

value of this parameter is almost certainly a function of the 

memory size, the types of tasks and their mix. 

A third parameter is the size of the data segments 

themselves. A size of 64 words was chosen for this system for 

a number of reasons. This size is compatible with a multi­ 

programming system which may have many segments in core 

simultaneously providing for ease of core management. In 

fact all program segments are multiples of 64 to simplify 

core management. The amount of data which a user wishes to 

access at any one time is rarely more than 64 words. Actually 

taking into account the time to transfer a block from disk and 

the time taken by the processor to process the block, a size of 

64 words strikes a happy medium as will be shown in the 

following discussion. 

The time to transfer a block, size n, from disk is 

given by: 

where t = time to access start of block, and a 
tw = time to transfer one word. 
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The time for the processor to process a block, size n, is 

given by: 

where t
8 

= time to initiate block transmission, and 

tk = time to process one word. 

One can then define the ratio of these as: 

for which u > 1 the system is processor bQund, 

u = 1 the system is balanced, and 

u < 1 the system is I/¢ bound. 

From this the desired block size for a balanced system is 

given by, 

In a typical text editor application in which one is copying 

a file, the times are approximately, 

ta= 10 msec. 

ts= 1 rnsec. 

tk = 300 µsec. 

5 µsec. 

ln an eriv1ronment of 3 to 4 users, Then the optimum block 

size ls n ~ 30 words. However, in another typical text editor 
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operation in which one deletes the file from which the 

new file has been copied, the time to process one word 

is about 30 µsec and then the optimum block size is 

n ~ 360 words. Assuming that one is accessing files much 

more frequently than one is deleting them, a data block 

size of 64 words is a reasonable compromise between the two 

extremes and still compatible with the core size limitations. 

7.0 FURTHER SIMULATION RESULTS ON O.S. #2 

All other simulation results and measurements were 

obtained with the parameters fixed at the values discussed 

in the previous section. The operating system is the improved 

version of O.S. #2 with random allocation of ID's and almost 

complete elimination of core shifts implemented in the system. 

The benchmark task used was the same as outlined previously 

with the exception that the file size simulated was 15,000 

characters regardless of the number of users on the system. 

The benchmark tasks were run repeatedly for a total time of 

60 seconds as a function of the number of users from one to 

eight. The operating system features studied include: 

(1) response - time to complete one benchmark task 

(2) through-put - as measured by the user time 

(3) average disk access time 

(4) average word transfer rate 

(5) processor utilization - idle 

- system 

- user 



- 27 - 

all as a function of the number of users on the system and 

as a function of disk speed, memory size and memory speed. 

7.1 System Features as a Function of Disk Speed 

The basic system configuration consists of BK of l µsec 

memory and an 1800 RPM, 376,000 word disk. The results of the 

simulation runs and of the measurements on the basic configura­ 

tion are summarized in Figure 7. The simulated and measured 

results are in close agreement in the region from 1 to 3 users 

where the results can be compared. It is noted that the idle 

time approaches a minimum for eight users such that more 

efficient use cannot be made of the processor by adding more 

users. The overhead time, i.e. the system time increases 

quite rapidly as a function of the number of users. This 

can be attributed to the larger number of thread changes taking 

place and the greater amount of core memory management required, 

User time or through-put increases almost linearly as a functior 

of the number of users, indicating an effective sharing of 

the system resources. The disk utilization time stays almost 

constant at slightly less than 75% of the total time 

simulated. 

The next system configuration simulated has the same 

features as the basic configuration but now has a higher speed 

disk, i.e., 3600 RPM, but still with 376,000 words. The 

simulation run results are summarized in Figure 8. There are 
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no measured results to compare with but the success of the 

simulation model in predicting performance for the basic 

system gives one confidence that the results are indeed valid. 

The disk activity has been modelled in detail so that the disk's 

angular position is a function of time and so that the disk 

delay necessary to determine the next best queue entry to 

service, is included. As would be expected the through-put 

for one user is greater than with the 1800 RPM disk, but 

certainly not twice as great. This is partly due to the fact 

that the system is no longer as well balanced as it was designed 

to be for the 1800 RPM disk and also partly due to the fact that 

the system is not disk-bound. The disk utilization time is even 

less now as the average disk access time has been shortened. 

The through-put certainly increases as the number of users 

increases but not as quickly as for the basic system. This 

can be attributed to the fact that the 3600 RPM disk system 

becomes processor-bound much more quickly than the 1800 RPM disk 

system. Beyond about 6 users the idle time actually increases 

slightly while through-put levels off. At first glance this 

may seem surprising but there is an explanation for this behavior. 

As the number of users increases, memory becomes heavily occupied, 

i.e., more and more segments are tied down in core and cannot be 

pushed out when more space is required. The number of entries 

put on the disk queue for service when core space is required is 

net as great as would have been possible if there were fewer 
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users and hence less memory was tied down. The queue cannot 

be serviced as efficiently now with the result that the 

average disk access time actually increases thereby reducing 

the total through-put. This effect is not as noticeable with 

the 1800 RPM disk as the disk delay time is a smaller fraction 

of the disk rotation time. As the disk delay time becomes a 

larger fraction of the disk rotation time, the chance of a 

queue entry's disk address falling in this area becomes greater. 

An entry whose disk address falls in this critical area cannot 

be serviced until a full disk revolution later. A few simulation 

runs with a smaller disk delay time indicated that the idle time 

was a very sensitive function of the disk delay time. In fact 

the idle time curve did flatten out rather than turn up when 

the disk delay time was decreased towards the idealistic value 

of zero. 

The same system configuration was again simulated, 

this time with a 376,000 word disk running at 900 RPM. The 

results are portrayed in Figure 9. As might be expected the 

system is highly disk-bound with the disk utilization time 

approaching 100% of the total simulated time. The through-put 

for one user is much less than for the higher speed disks 

simulated previously. Two more users are easily handled 

by the system but beyond three users the through-put is not 

increased significantly. The problem again becomes one of 

memory restrictions. 
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For the various speed disk systems simulated, the 

optimum number of users would appear to be about five, from 

the point of view of through-put. The important thing to realize 

here is that through-put does not increase in direct proportion 

to disk speed. The percentage increase in through-put from the 

900 RPM disk system to the 1800 RPM disk system is much greater 

than from the 1800 RPM disk system to the 3600 RPM disk system. 

This can be attributed to the fact that as the disk speed is 

increased the system becomes more and more processor bound. 

7.2 System Features as a Function of Memory Size 

Another parameter which can be varied in the simulation 

model and in the actual system to some extent also, is the size 

of memory available to the user. Some preliminary measurements 

and simulations were carried out to demonstrate in detail the 

effects of varying the memory size. A benchmark task dealing 

with a file of 6000 characters was run for a total of 60 seconds 

for various values of available memory size with only one user on 

the system. The results of the measurements and of the simulation 

runs are compared in Figure 10. The reason for choosing a file 

length of eoco characters is that a file of this length would fit 

completely in a memory size of ~9500 words. This represents 

an extreme case and hence a useful data point. In the region of 

8K or fewer words where the simulated and measured results can be 

compared, there is close agreement. The simulated results have 

been carried beyond the point where the complete file fits in 
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memory. Of course at this point idle time and disk utilization 

time drop to essentially zero. The through-put increases at a 

faster rate than linear. Interestingly enough the 

system time does not increase appreciably. This can be attributed 

to a simplified core management task for a larger core size. 

Figure 11 shows the corresponding response time as a function of 

memory size. The response time, which here is defined as the total 

time to complete one benchmark task, decreases approximately 

inversely as the memory size available to the user. Of course 

when the complete file can be contained in memory, response is 

at a minimum of 1.15 seconds. With an 8K memory size the response 

time is only about a factor of two greater. This seems like a 

reasonable response for a virtual memory system. 

To further study the effects of increasing the size of 

memory, it was decided to simulate the system with the three 

different disk speeds as before but now with an extra 4K of memory 

added on to effectively double the core space available to the user. 

Figure 12 shows the results of the simulation runs for the 1800 RPM 

disk with 12K of core. It is obvious that the through-put is 

increased for a larger core size but the percentage increase over 

the through-put for the 8K system is greater for a small number of 

users than for a larger number of users. The corresponding results 

for the 3600 RPM and 900 RPM disk systems with 12K of core are 

sh0wn in Figures 13 and 14. The same basic conclusions can be 

drawn for these systems as for the 1800 RPM disk system. Note 
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that for all systems, the idle time does decrease as a function 

of the number of users and does not increase for eight users 

above what it is for five users as it did in the case of 8K of 

core and the 3600 RPM disk. The improvement is a result of 

less severe core restrictions. Again it can be noted here that 

the increase in through-put of the system is not directly 

proportional to the amount of core space available to the users. 

7.3 System Features as a Function of Memory Speed 

A third system design parameter which one can vary 

is the speed of memory. Here the effects of doubling the speed 

of memory and hence cutting the cycle time of the processor in 

half are studied via simulation. The results of a series of 

simulation runs for an 8K computer supported by an 1800 RPM 

disk are shown in Figure 15. As expected this system is highly 

disk-bound as it is not properly balanced for a 0.5 µsec memory. 

Through-put increases linearly with the number of users and shows 

little sign of slackening off with up to 8 users. With slower 

memory, 5 users was about the optimum number of users. 

The results as shown in Figure 15 were given further 

credibility by simulating the same system, this time with a 

3600 RPM disk. As expected the response time was one-half of 

that for the basic system with an 1800 RPM disk and a 1 µsec cycle 

time. Essentially the time scale has been cut by a factor of two. 

Processor speed has a very marked effect on response time of the 

system. 
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7.4 Comparison of the Various System Configuration 
Simulation Results 

A better perspective of the results of changes in 

disk speed, memory size and memory speed can be gained from a 

study of Figures 16 and 17. Figure 16 displays the average 

disk access time as a function of the number of users for all 

of the variations in disk speed, memory size and memory speed 

studied. The increase in disk rotation speed certainly decreases 

the average disk access time but not in direct proportion to the 

increase. Increasing memory size has only a small effect on the 

average disk access time, but in all cases it does have a 

marked effect when there are many users on the system. There 

is no upturn in average disk access time with eight users as 

there was with the 8K memory. The reduction in disk access time 

as a function of the number of users is most dramatic in the 

case of a faster memory cycle time, decreasing from eleven to 

about five milliseconds for eight users. 

Figure 17 shows the response time for the benchmark task 

in question as a function of the number of users for the various 

values of disk speed, memory size and memory speed simulated. 

Increasing core size for the 900 RPM disk system has a marked 

effect on response as now a larger fraction of the user's file is 

held in core and less disk accessing is required. Even for the 

1800 RPM disk system the decrease in response time is appreciable 

for a larger memory size. However for the 3600 RPM disk system 

the effect of increasing core size is less noticeable. Doubling 
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the speed of memory has the most pronounced effect on response 

time. The slope of the curve on Figure 17 corresponding to a 

higher speed memory is much less than that of the other curves 

for the 1 µsec memory. Of the three major parameters varied in 

the system design, memory speed is the most important one. 

8.0 AN ECONOMIC MODEL OF THE SYSTEM 

The simulation results have given a quantitative measure 

of the effects of changes in the hardware configuration and changes 

in software strategy, e.g., ID allocation and memory management. 

However, one would like to give a dollar value to the cost 

effectiveness of these changes. Hence we propose a simple model 

of a multi-programming virtual memory system (as outlined in this 

paper) which can support up to eight users who are using the 

system for data retrieval and file updating and thus accessing 

files in a manner similar to that simulated in the benchmark 

tasks. We give a dollar value to each piece of hardware in the 

system based on a per unit cost for a quantity of about fifty such 

systems. Then for each hardware addition or removal the total 

cost of the system is adjusted accordingly. The estimated cost 

for each piece of hardware is listed in Table 4 and is assumed to 

represent today's (1970) market prices fairly closely. Thus for 

each system configuration, it would cost about $2000 to add 

communication hardware to support an additional user terminal. 

The cost of a basic system supporting only one terminal would 

be $26,000. 
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There are two ways of measuring the cost effectiveness 

of the changes in the hardware configuration. One method is to 

look at the variation in the product of the total cost per user 

times the response time of the system. The longer the response 

time that each user sees the more expensive it becomes for a 

user to execute a certain task. A second method is to look at 

the variation in the total cost per unit of through-put. Here 

the user time per given time interval obtained in the simulation 

runs is used as a measure of useful system through-put. Actually 

it turns out that the resulting curves are of similar shape and 

the corresponding relative values on the curves are almost 

identical. This is to be expected as response is almost inversely 

proportional to through-put per user. 

Figures 18 and 19 display the results obtained for this 

study making the assumptions outlined above for eight different 

system configurations. Figure 18 gives the relative cost ratio 

obtained as a product of the total system cost per Uf:Er and the 

response time of the system to the benchmark task. Figure 19 

gives the relative total system cost per unit of through-put. An 

analysis of the curves leads to some surprising results. Consider 

the effect of the increase in disk speed. For each different disk 

speed simulated the increased disk speed pays for itself in terms 

of improved performance. However for more than five users the 

system becomes more expensive to operate, i.e., cost performance 



- 36 - 

deteriorates. For more than 6 or 7 users the 3600 RPM disk 

does not pay for itself when compared to the 1800 RPM disk. 

Increasing memory size from 8K to 12K for each different disk 

speed improves the cost performance when there is only one 

active user on the system. For three or more users on the 

system the extra 4K of core does not pay for itself, i.e., the 

response may improve with more memory but not enough to offset 

the extra core costs. The explanation for this is that the 

memory management algorithm used does not know which segments 

to throw out when making space. Thus to perform the benchmark 

task the whole file must be paraded into core three times. 

Having a larger core only means a slightly increased probability 

that the data segments which are to be accessed will be in core 

memory when needed. Hence extra core 1s really only helpful when 

file sizes are small and one can be guaranteed that most of the 

file will remain in core while it is being accessed. If the 

greater part of the file does not remain in core during accessing, 

extra core will not be beneficial unless it is large enough to 

contain the greater part of all user files being accessed. 

Higher speed memory is seen to be very cost effective. 

The doubling in memory speed actually doubles the processing power 

of the CPU. For one or two users the system is more expensive 

than the other configurations modelled. However, if the system 

is meant to support three or more users it is more cost effective 

than any of the other configurations. In fact as the number of 
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users on the system increases the relative cost of the system 

decreases whereas for the other configurations there is a 

definite turning point at about five users beyond which the 

relative cost increases. Even a faster disk improves the cost 

effectiveness as the system is disk-bound with a 0.5 µsec memory. 

However, for eight users the cost effectiveness is not much 

improved over that for five users. With the larger number of 

users the system again becomes core limited and processor-bound 

as with the basic system configuration. 

For all configurations simulated here except for 

the 0.5 µsec memory system the optimum number of users seems to 

be about five. For fast memory the more users the less the 

relative cost for the system is (up to about eight users). 

This economic model of the system brings to light, not the 

factors which improve the response and through-put of the system, 

but rather the factors which improve response and through-put 

enough to produce an economical saving. It must be noted that 

the results obtained here assume that the users are busy 100% 

of the time, i.e., no "think time" has been included in the 

system model. No factor has been included to take into considera­ 

tion the cost of human time which would make poor response expensivE 

The number of users referred to on the x-axes of all the 

relevant figures is actually the number which are busy 100% 

of the time while other users may be in an idle state. Thus 

the number of users is really to be regarded as a statistical 
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average of the number of users waiting for a response from 

the system. 

9.0 CONCLUSIONS 

The slmulation and measurement results have suggested 

some further improvements in the operating system. For instance, 

the rewind operation in the TEXT editor has been simplified by 

storing the starting ID of the current file being accessed. Thus 

when one wishes to rewind the file, one merely links up to the 

starting ID. Previously one would read in each segment of the 

file using the back pointing ID to get to each preceding data 

block until the beginning of the file was reached. This was 

primarily a disk-bound operation. Another improvement which is 

presently being implemented is the breaking up of some large program 

segments into smaller ones so as to ease the eore management task 

by providing for an easier flow of smaller program blocks into 

exlst:tng holes 1n eore. This also has the advantage of diminishing 

the amount of memory occupied by each user at any one time and 

thus provides for better interaction and less severe core 

restrictions. 

The implementation of meters on the computer system 

portraying the allocation of the system resources has proven 

very useful in providing insight into the operating system. The 

meters give a dynrunic picture of the use of the system resources 

as various types and mixtur~of programs are being run. Hence it 
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is an easy matter to determine whether the system is disk-bound 

or processor-bound. The meters show up the system bottlenecks 

instantly whereas software measurements and simulation results 

usually require some further analysis to determine the bottlenecks. 

This paper has given quantitative measurements of a 

particular operating system in a multi-programming, virtual memory 

environment. These measurements and the simulation results have 

given insight into the operating system and provided a good under­ 

standing of the factors which affect the through-put and response 

of such a system. The simulation of the basic model has given a 

good reference on which to base further simulations of modified 

versions of both the operating system and the hardware configura­ 

tion of the system. The economic model proposed has given an 

insight into which possible improvements to the system would 

prove to be cost effective. Increasing processor speed is by far 

the most economical improvement provided the system is being 

utilized by more than two users for a good fraction of the time. 

It is hoped that the results presented in this paper 

will prove useful in the design of operating systems for small 

computer systems, especially those which depend heavily on core 

management and disk I/0 activity. The optimization of these two 

. --. ac t Lv I ti.es has been found to be of extreme importance in maximizing 

the through-put of the system described here. 
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Users TIME TIDL TUSR TSYS TMDUT TMDTF TMDSF TMCSF TMDDP TMIDF NCSFT NCTHD NDSKI 

Simulated lt 78. 7 67.1 5.2 6.4 72.6 35-9 21.3 1.4 20.2 44.6 90 - 3350 

Measured lt 79 68 5 6 71 34 21 1 22 45 85 - 3400 

Simulated 2* 71.8 59.8 5.2 6.8 69.8 37.3 23.3 2.3 34 48 120 560 3400 

Measured 2* 72.5 60.5 5 7 68 35 22 2 40 53 105 540 3400 

Simulated 5* 59.1 44.5 5-3 9.3 57-9 36.0 16.3 3.1 35 41.1 170 650 3350 

t 30,000 character file 

* 15,000 character file each 

* 6,000 character file each 

TABLE 1 
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Users TIME TIDL TUSR TSYS TMDUT NCSFT NCTHD NDSKI 

lt 24 16 5 3 19 6 - 900 

2* 16 8 5 3 14 7 460 1020 

5* 12.7 4.2 5.2 3.3 9.6 5 385 960 

t 30,000 character file 

* 15,000 character file each 

* 6,000 character file each (simulated) 

TABLE 2 
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Users TIME TIDL TUSR TSYS TMDUT NCSFT NCTHD NDSKI 

Simulated lt 17.2 9.7 5.2 2.3 11.9 0 - 979 

Measured lt 17.6 10.0 5.3 2.3 12.3 0 - 982 

Simulated 2* 14.6 6.5 5.2 2.9 11.5 1 440 990 

Measured 2* 14.7 6.4 5.3 3.0 12.0 1 458 1020 

Simulated 5* 10.5 2.3 5.1 3.1 7.1 2 493 1012 

t 30,000 character file 

i 15,000 character file each 

* 6,000 character file each 

TABLE 3 



Price List of Computer System Components 

Processor $ 4,000 

8K Memory (1 µsec, 16-bit words) 10,000 

12K Memory ( 1 µsec, 16-bit words) 14,000 

8K Memory (. 5 usec , 16-bit words) 20,000 

Disk (32 track, ½M words, 900 RPM) 6,000 

Disk (64 track, l.M words, 1800 RPM) 8,000 2 

Disk (128 track, ½M words, 3600 RPM) 12,000 

Terminal 2,000 

General Interface 2,000 

TABLE 4 
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SECONDARY WORD TRANSFER RATES FOR 
THE VARIOUS OPERATING SYSTEMS 
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EFFECTS OF VARYING DISK DELAY TIME 
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SIMULATION RESULTS FOR BASIC SYSTEM (1800 RPM DISK) 
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SIMULATION RESULTS FOR 900 RPM DISK SYSTEM 
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PROCESSOR USAGE AS A FUNCTION OF MEMORY SIZE 
FOR ONE USER 

50 

40 

- 0 30 
~ - 

20 

10 

X SIMULATED RESULTS 
o MEASURED RESULTS 

( 1 USER) 

6000 7000 8000 
TOP OF CORE 

9000 10,000 

FIGURE 10 



RESPONSE TIME AS A FUNCTION OF 
MEMORY SIZE FOR ONE USER 

4 

3 
c3 w 
Cl) - IA.I 
2 
.:: 2 
w 
Cl) z 
0 a. 
Cl) 
l&J 
a:: 1 

X SIMULATED RE SUL TS 
O MEASURED RESULTS 

(1 USER) 

6.000 7,000 8,000 9,000 
TOP OF CORE 

10,000 

FIGURE 11 



SIMULATION RESULTS FOR 1800 RPM DISK SYSTEM 
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SIMULATION RESULTS FOR 3600 RPM DISK 
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SIMULATION RESULTS FOR 900 RPM DISK 
SYSTEM WITH 12K OF 1 p. SEC MEMORY 
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SIMULATION RESULTS FOR 1800 RPM DISK 
SYSTEM WITH eK OF 0.5fLSEC MEMORY 
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AVERAGE DISK ACCESS TIME FOR THE VARIOUS 
SYSTEM CONFIGURATIONS 
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RESPONSE TIME FOR THE VARIOUS SYSTEM CONFIGURATIONS 
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RELATIVE COST PER USER TIMES RESPONSE 
TIME FOR VARIOUS SYSTEM CONFIGURATIONS 
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RELATIVE COST/CPU TIME UNIT FOR VARIOUS 
SYSTEM CONFIGURATIONS 
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