
BELL TELEPHONE LABORATORIES

nu: ,,..,,o"MATIOH CO""'1TAINI.D MC::RltH IS ,.Ollt
THI use 0,. EMPLOYEE• OF' at:LL T[Ll:~MON[
LAaO•AT0•1r:s. IMCOIII .. ORAT[D. AND 19 ltr,fQl

COVER SHEET FOR TECHNICAL MEMORANDUM

TITLE Performance Simulation and
Measurement of a Virtual Memory
Multi-programming System for a
Small Computer

CASE CHARGEC- 39395
FILING CASES-- 39395-61

MM 71 __ 1383 _ _l_

DATE- January 20, 1971

AUTHOR -H. Lycklama

FILING SUBJECTS- Sma 11 Computers
Simulation
Operating System
Memory Management
Virtual Memory
Multiprogramming

ABSTRACT

The performance of an operating system for a small

computer in a virtual memory multi-programming environment is

described in terms of through-put and response. Both direct

measurements and simulation runs have been utilized to obtain

quantitative results on the operating system performance. The

findings were used as aids in the evaluation of and as guidelines

in making refinements to the operating system. Memory management

strategy and user file organization were found to be the two major

factors affecting the through-put and response of the operating

system. The simulation model has been extended to study the effects

of increasing memory size, increasing disk speed and in increasing

memory speed for a small computer system. The results were then

incorporated into an economic model of the syste~ pointing out

the cost effectiveness of the improvements.

E-1032-c ,e-ee,
SEE REVERSE SIDE FOR DISTRIBUTION LIST

TABLE OF CONTENTS

Page
1.0 Introduction 1

2.0 System Description 2

3.0 Measurement Techniques 4

3.1 A Note on Simulation 7

l~.O Initial Operating System 8

4.1 Simulation and Measurement Results for Operating
System 1 (o.s. #1) 12

5.0 Modified Operating System (o.s. #2) 16

5.1 Further Improvements to O.S. #2 18

6.0 Some Two Level Memory Considerations 21

6.1 Discussion of Critical System Parameters 23

7.0 Further Simulation Results on O.S. #2 26

7.1 System Features as a Function of Disk Speed 27

7.2 System Features as a Function of Memory Size 30

7.3 System Features as a Function of Memory Speed 32

7.4 Comparison of the Various System Configuration
Simulation Results 33

8.o An Economic Model of the System 34

9.0 Conclusions 38

@
Bell Laboratories

subject: Performance Simulation and Measurement
of a Virtual Memory Multi-programming
System for a Small Computer
Case 39395-61

date: January 21, 19·

from: H. Lycklama
MM71-1383-3

MEMORANDUM FOR FILE

1.0 INTRODUCTION

This study was initiated in order to understand

and measure quantitatively the response and through-put of

a small time shared computer system. The operating system

utilizes the concepts of demand paging and virtual memory.

It is difficult to assess the merits of a particular operating

system without having precise measurements by which the

effectiveness of certain strategies can be compared with

those employed by other operating systems. Memory management

strategy is an important part of the overall operating system

design. Also user file organization has a marked effect on the

average access time to secondary storage. Any model of the

operating system must describe these two activities in detail

in order to give close agreement with measured results on the

system and in order to predict the effects of changes in imple­

mentation of these two activities. In particular one would like

to know the trade-offs involved in increasing memory size,

increasing disk speed and in increasing memory speed for a small

computer system.

- 2 -

This study describes the results of measurements on

a virtual memory multi-programming operating system designed

for an 8K, 16-bit word computer with 376,000 words of secondary

storage.(l) A simulation model was developed to gain insight

into the operating system and hence point out the bottlenecks in

the system. The findings were then used as aids in the evaluatior

of and in making refinements to the operating system. The disk

allocation scheme as described in (1) has been altered considerab:

to avoid some of the bottlenecks pointed out by the simulation

model. This resulted in a three-fold increase in through-put.

Through-put here is defined as the percentage of total elapsed

time during which the CPU is executing a user's program. The new

disk allocation scheme was built into the simulation model. This

model pointed out some more bottlenecks. Improvements in core

management and file organization resulted in a further gain of

about 30% in through-put. CPU utilization, system response, disk

activity and system overhead are some of the parameters which wer1

monitored in the simulation and actual system measurements.

Close agreements of the simulation model results with

the actual system measurements was achieved over a wide range of

system parameters. The model was further extended to study the

results of increasing memory size, increasing disk rotational

speed and decreasing memory cycle time. These results were then

incorporated into an economic model of the system pointing ()Ut

the cost effectiveness of the improvements.

- 3 -

2.0 SYSTEM DESCRIPTION

The basic system hardware configuration consists

of a Honeywell DDP-516 computer with 8192 words of 16-bit,

0.96 µsec core memory. Secondary storage consists of a fixed

head, 64-track disk (~376,000 words) operating at 1800 RPM and

connected to the computer via a fast DMA (Direct Memory Access)

channel. Most of the I/¢ devices are connected to the computer

via a serial I/0 bus(2) as shown in Figure 1. These consist of

fnur rn()deJ 103 Dataphone data sets, a PDP 8/I computer and a

special memory interface. A control teletype and a 201 Dataphone

data set are interfaced separately to the computer I/¢ bus.

Software for the system consists of 4000 words of systff

code (the operating system) and many segmented user programs,

which are brought into the 4000 word area of user core on demand.

Each user has a thread-save block to store all his temporary data

which allows all code to be re-entrant. Programs are broken up

into segments of various lengths. Data is broken up into segment

11f 64 words each to keep the core requirements of each user down

t,, a r-e a e oria b Le amo un t , The system code handles virtual memory

addressing, core management, I/¢ processing, thread changing

(changing control from one user to another) and the allocation

of all system resources.

The main user programs currently supported by the

system include:

Text Editor - for creating and updating files.

Assembler - to assemble program segments.

THAC - a character string manipulating language.
FSNAP - an interpretive calculating language.
H0P/\K - a relocatable octal debugging pac ka ge ,

- 4 -

and several programs for communicating with the GE-635 computer.

The operating characteristics of all of these programs depend

very much on the file organization and core management strategies

implemented in the operating system. If the file.which

the user is accessing is small, the response time to the user's

typed-in request for service is negligible regardless of the

number of users on the system. However, as the length of a

user's file increases, the time to access a file will increase

as some part of his file may be off on secondary storage. Thus

lt is important that his files be organized for minimal access

time with or without other users on the system. One of the

purposes of the present simulation study is to gain insight

into the factors affecting the file access time.

3.0 MEASUREMENT TECHNIQUES

The evaluation parameters which one employs to

characterize a multi-programming system can be divided into

two categories. First of all there are the global system

capacity parameters including through-put, response time and

cost per operation. Then there are the local parameters which

are much more dependent on the individual hardware and software

configurations. These include:

(1)

(11)

(111)

average secondary storage access time

average data transfer rate

average instruction execution time

- 5 -

(iv) average executive system processing time

(v) average user processing time

(vi) effective busy time of processor

and (vii) hardware utilization - processor
- memory
- secondary storage.

There are various techniques which can be used to

measure these parameters depending on the accuracy with which

one wishes to measure the parameters and whether one is more

interested in global than in local parameters of the system.

In this study we are concerned with studying the system in

some detail and hence are interested in measuring both types

of parameters.

Characteristic of all such computer system studies,

one must measure the parameters of interest under a given load

on the system. One technique often employed ls the stimulus

approach in which a certain Job is entered into a mix of running

programs and the response time noted. However, this method

suffers from the fact that the results are not reproducible and

the effects of system changes are difficult to detect. The use

of a benchmark task is more rewarding. Such a task can be run

under a new version of the operating system and the measured

parameters compared directly with those obtained on an earlier

version of the operating system. The benchmark task also has

the advantage over using a normal mixture of jobs in that the

- 6 -

fluctuations in the nature of the load do not wipe out the

effect to be measured. The use of benchmark tasks is

emphasized in the present study.

Three major techniques were employed to measure the

system parameters. Hardware was installed on the present system

in the form of megacycle clocks and external meters to monitor

various system parameters. The meters were used to monitor

average CPU utilization, user time, system time and idle time

by indicating the corresponding clock counting rates. Other meter

wtire used t,) Indicate such parameters as the average disk word

transfer rate and the number of users logged into the system.

Software was used in conjunction with the megacycle

clocks to turn them on or off at the appropriate times in the

operating system to measure time spent in various sections of

system and user programs. A clock monitor program keeps track

of the total time spent in various programs and types out the

accumulated results on command. The monitor program itself only

takes up about 128 words of core memory and produces no appreciabl

l.n t.e rf'e r e nc e wt t.h the operation of the system.

The use of hardware and software techniques allowa

one to measure the parameters of the present operating system

but does not allow one to predict the results of changing some

features in the operating system. For this reason a simulation

model was built to allow for extrapolation beyond the present

- 7 -

system configuration. A benchmark task was used to measure

the system response and throu~~-put as a function of various

changes in the operating system. The particular task chosen

was one which exercises many of the tasks of the text editor,

namely, it creates a file of 30,000 characters, rewinds the

file and then deletes the file.

3.1 A Note on Simulation

High level simu1ation languages have been developed

to model computer systems, e.g.,GPSS(3),SIMSCRIPT(4), SIMULA(5), et

However, the execution times of simulation model programs written

in these higher level languages tend to be long and their

versatility leaves something to be desired. For example, we

found that to run a typical model in SIMSCRIPT required three .,
w

ti.mes as long as the same model written in FORTRAN. Other systems

analysts have come to the same conclusions regarding higher level

simulation languages. The universality and versatility of

FORTRAN make it a good language upon which to build a simulation mo,

The system model 1s based on a list of discrete

events which occur when the system changes state, e.g., from

user to system, system to idle, etc. Entities which are created,

e.g., users, change their attributes at each change of state.

The system parameters being monitored require updating at each

change of state. In the model the angular position of the disk

is defined as a linear function of the simulated running time

of the model. Such close attention to detail was found to be

- 8 -

necessary in order to closely describe and model the system.

Benchmark tasks are used to exercise the system both in the

simulation model and on the DDP-516 computer system to permit

comparison of the simulated and the measured results. It is

important to generate tasks which are long enough to collect

meaningful statistics.

4.0 INITIAL OPERNfING SYSTEM

A fairly detailed description of the operating system

will be presented below in order to introduce the parameters of

interest in the model. A more detailed discussion can be found

in (1). Memory management is one of the most important aspects

of the operating system. Program and data segments are brought

into core on demand. When core memory becomes fully occupied

and space is required for another segment, the segment table is

searched for data blocks or program segments which are not

presently in use and can be pushed out. One of the important

variables involved in this core request is the minimum core

request, MINCR, i.e., the minimum amount of core space freed up

when core is full. Freeing up a certain minimum amount of core

reduces the overhead for the next request for core space but

increases the probability of pushing out a segment which may

be required soon. This is a trade-off which will be investi­

(!J3.ted. Freeing up core involves marking as holes those data

blocks or program segments which have not been updated slnce

bei.ng brought into core and putting on a disk queue those segments

- 9 -

which have been altered. The segments on the disk queue are

written out on disk under control of the interrupt routine.

When the sum of the holes 1s great enough to satisfy the space

requirements for the segment, core is shifted down over the

holes and the segment j_s read in from disk or a new data

segment created, as the case may be, at the top of the

currently used core.

Program segments typically vary in size from 208 to

14008 words with a majority of the segments being less than 2008
words long. User files are organized as linked data segments

each 1008 words long. Each segment contains 118 characters

(2 per word). The data segment size, 1YI1SGSZ, is another sye t em

variable which can be optimized for the system. However it is

desirable to keep segments small to allow for a better mix

of users. The value of this parameter will be discussed in some

detail in a subsequent section.

About 376,000 words of disk storage are available for

user files and programs. Disk is organized as shown in Figure 2.

The disk name table contains the names of all the program segments

on disk with a cross-reference pointer to the corresponding ID

table entry. The disk ID table contains the disk address of

each program or data segment on disk. All unused ID's are so

indicated. The ID table entry also contains the size of the

segment. The important aspect of this disk allocation scheme

- 10 -

is that to read a segment from disk, two disk accesses

are required,

(1) read ID table entry to get segment size and

disk address

(2) read segment down from disk.

To write a new segment on disk requires five disk accesses,

(1) read ID table entry (as two entries are made per

8-word sector)

(2) write changed ID table entry on disk

(3) check disk _image of ID table entry

(4) write s e gmerrt in allocated disk space

(5) check disk image of segment.

Another aspect of this scheme is the number of disk accesses

required to allocate and de-allocate ID's. Initially all

available ID's are put on a chained queue which is organized

on a last in first out (LIFO) basis. Allocating an ID requires

\,ne disk access t0 read the next ID from the end of the chain.

To de-allocate an ID requires three disk accesses similar to

the first three steps in writing a segment on the disk. This

process takes a minimum of two disk revolutions as the same disk

sector must be accessed three times. During this time all other

ID table references by other disk queue entries are blocked to

prevent multi-programming collisions and also since all ID table

entries are read into a fixed location in the system.

- 11 -

A disk queue is maintained containing all of the

disk access entries which require service. Each time this

queue is serviced, the entry with the least latency is given

priority. There is of course a certain minimum disk delay

necessary, DSKDEL, before an entry can be serviced, This is

the time required to search the queue for the entry with the

least latency after the disk angular position has been read.

DSKDEL is another variable which can be optimized for the system.

If the entry with the least latency cannot be serviced, it is

blocked and the next best entry is given service. Of course

the greater the number of blocked entries, the less efficient

the disk queue server will be. When all entries are blocked,

they are all immediately unblocked and the next best entry

1s serviced provided it is not again blocked. One reason for

a block occurring is that a disk - user core transfer cannot be

initiated while a core shift is taking place. Another reason

is that only one ID table entry can be examined at a time. Thus

for a write ID table entry operation, a disk table flag is set

up after the entry has been read from disk so that another ID

table entry cannot be written over the previous entry while it

is being set up for the subsequent write and compare operations.

Thus the disk table flag is up for at least two complete disk

revolutions.

- 12 -

4.1 Simulation and Measurement Results for Operating
System l (O.S. #1)

A benchmark task consisting of creating, rewinding

and deleting a file of 30,000 characters was run on the system.

A simulation model was also run for comparison. The results are

summarized in Table 1. The column headings are as explained

below:

TIME - total elapsed time taken to perform the benchmark
task (in seconds).

TIDL - time during which the CPU is idle.

TUSR - time during which the CPU is active in the
user's program.

TSYS - time during which the CPU is active in system
programs, e.g., virtual addressing, space finding,
servicing disk queue, etc.

TMDUT - time during which the disk is being utilized
including setup, access and transfer time.

TMDTF - time during which the ID disk table entry is
in use and another ID table entry cannot be read
from disk.

TMDSF - time during which a disk sensitive task is in
progress and core shifts are inhibited.

TMCSF - time during which core shifts are in progress and
a disk sensitive task cannot be initiated.

TMDDP - time during which some disk queue entries are
blocked (these entries are re-enabled only when
no others are available for service).

TMIDF - time durlng which an ID is being allocated to or
de-allocated by a user (during this time other
users are prevented from doing the same).

NCSFT - number or core shifts which occurred during the
monitored time.

- 13 -

NCTHD - number of thread changes which occurred during
the monitored time (this is the number of times
which the CPU was reassigned to another user).

NDSKI - number of disk accesses which occurred during
the monitored time.

The close agreement of the simulated results with the

measured results for the various number of users on the system

indicates that all of the gross features of the operating system

have been included in the simulation model. It is quite evident

from the results that too much time is being spent by the CPU

in the idle state. Even by dividing the total work up between

five users, only a 25% saving in total time is achieved.

Basically the reason for the large percentage of idle time is

that too many disk accesses are required for one operation, e.g.,

five accesses to write a segment on disk. The cause of the poor

mix of jobs 1s that some disk accesses inhibit the initiation of

other similar types of accesses until the results of the first

disk access have been altered, rewritten on disk and compared at

least two complete revolutions of the disk later.

More specifically the bottlenecks in the operating

system are as follows. The time during which the disk

table entry is in use, TMDTF, is rather long. During this time

other disk queue entries requiring the use of the disk table

entry (eight words in core memory) are blocked. One possible

solution to this bottleneck would be to allow for multiple

- 14 -

disk table entries to be read into core. A simulation run

showed that this would reduce the time for the benchmark task

from 79 seconds to 55 seconds. However, the modification in

system program required to implement this change would contribute

to the system overhead and still would not eliminate the basic

reason for excessive idle t Lme , i.e., too many disk accesses.

The best possible solution would undoubtedly be provided by

avoiding the use of an ID table on disk altogether and having

some form of a disk table permanently in core memory. This

would eliminate the need for many of the disk accesses.

The time during which an ID is being allocated or

de-allocated is also a large fraction of the total benchmark

task time. Dur:lng this time a.11 other users are prohibited from

allocating or de-allocating ID's and also from using the disk

table entry in core. This again causes some disk queue entries

to be blocked and prevents the disk queue from being serviced

very efficiently. A solution to this bottleneck would be to

read or write a block of say 64 ID's at a time and use these

64 for allocation and de-allocation until one runs off either

end of the block of ID's. This would greatly reduce the number

of disk accesses required for allocating and de-allocating ID's.

However, again thls is only a "half-way" solution and does not

completely eliminate the possibility of having blocked queue

entries. The results of the two major bottlenecks discussed

- 15 -

above, namely the limitation to the use of one disk table

entry at a time and the multiple disk accesses required to

handle allocation and de-allocation of ID's, can be seen in

TMDDP, the time during which some disk queue entries are blocked.

Another major bottleneck is presented by the core

management strategy. As discussed previously, when core space

is required for a segment and no space is available at the top

of the currently used core_, the segment table is searched for

eegments which can be thrown out. Those which must be rewritten

on disk are put on the disk queue and serviced according to the

least latency principle. Meanwhile the segments which remain

in core are shifted down to make room at the top for the new

segment. However core cannot be shifted while a disk sensitive

task is in progress. This turns out to be at least 25% of the

time. Similarly a disk sensitive task cannot be initiated

while core is be::tng shifted down. 1rhese conflicts tie up

memory unnecessarily and hence diminish the through-put of the

system. A good solution for this bottleneck (which was later

implemented) is to shift core only when absolutely necessary,

i.e., put the new segment in an existing hole in the core map.

However, this solution would only be effective if the probability

of finding a hole of the right size were high. Such is not the

case in operating system 1 as there are no restrictions on the

size of the segments.

- 16 -

Some i.mprovements were implemented in the existing

operating system. A simulation run demonstrated that the

response time for the benchmark task previously described with

one user could be improved from 79 seconds to 70 seconds by

randomizing the allocation of the ID's for the data segments.

This can be achieved by putting the available ID's on the chain

of ID's in a random order. An actual test run on the system

gave close agreement with the simulation results. Another

improvement was achieved by modifying the disk queue servicing

strategy. Now all blocked entries are re-enabled immediately

before looking for the next best disk queue entry to service.

This reduced the response time for the same benchmark task by

another four seconds.

However, the improvements made are only minor ones.

Only up to a 15% saving in response time can be made. The fact

remains that there is too much idle time as too many disk accesses

are required to perform a basic operation. The disk queue cannot

be serviced very efficiently as one queue entry may require

several disk accesses before another entry can be serviced.

Also the bottleneck caused by the inhibition of core shifts

while a disk sensitive task is in progress remains.

5.0 MODIFIED OPERATING SYSTEM (o.s. #2)

It was obvious that a radical change in the disk

organization was necessary to improve the response of the system.

Therefore, the disk storage area was reorganized as shown in

Figure 3, The number of possible segment sizes has been reduced

- 17 -

to eight, all multiples of 1008 words ranging from 1008 to

1400
8

words. Now there is no longer a dlsk ID table kept up

on disk, but a disk map is kept in core using one bit to indicate

whether or not each block of 64 words is allocated. The ID

cf each program and data segment contains the actual disk address

at which the segment is physically stored on disk and the segment

size. Thus to read a segment from disk requires only one disk

access (compared to two previously) and to write a segment require

only two disk accesses (compared to five previously), one to write

the segment and another one to perform the disk compare operation.

To allocate or de-allocate an ID now requires no disk accesses

compared to one and three, respectively under the old operating

system. Now there are no longer any conflicts in servicing a dis1

queue entry as it is impossible to have a blocked entry. The

process of allocation or de-allocation of an ID no longer inhibit~

the allocation or de-allocation of another ID. Hence the disk

queue can be serviced very efficiently.

Some measurement and simulation results for 0.S. #2

are shown in Table 2. These can be directly compared to those

for o.s. #1 as listed in Table 1, It can be seen that the

response time has been reduced by at least a factor of 3 over

the initial version of the operating system for the corresponding

number of' users. This can be attributed almost directly to the

fewer disk accesses required to perform the benchmark task. The

t1.me spent by the CPU in system routines has also been cut by

a factor of two from about 6 seconds to 3 seconds. The user tim'"~

o f course remained constant at about 5 seconds, As evidenced by

- 18 -

the fewer number of core shifts which occurred under O.S. #2

the core management strategy has been changed in this operating

system. SegJ11ents brought down from disk or created for the user

are put in existing holes of equal size if possible to minimize

the number of core shifts required. The probability of finding

a hole of the proper size is now relatively high as all segments

are a multiple of 64 words in size.

One of the most important advantages of this second

operating system 1s the fact that users now mix much better.

Dividing the benchmark task up between five users cuts the total

response time by a factor of about 2 compared to a factor of

about 1.3 in the initial operating system. This can be attributed

to the fact that disk queue entries can now be serviced effectivelJ

according to the least latency principle.

5,1 Further Improvements to O.S. #2

Two more improvements were implemented in operating

system #2 on the basis of encouraging results projected by

simulation runs. By randomizing the order in which the ID's

are allocated, a 30% improvement in response time was projected

for 1 user executing the 30,000 character file benchmark task.

This was borne out by a run of the same benchmark task on the

system. A random allocation of ID's seems appropriate for this

system as the files must be accessed in both directions, forwards

and backwards.

- 19 -

The second improvement made was to make the core

management strategy more efficient. In the first operating

system a core shift was required whenever space was needed for

a segment and core was fully occupied. In the second operating

system a core shift was required only when an exact match could

not be found between an existing hole size and the requested

segJnent size. A further improvement was now implemented in

which a segment was placed in consecutive holes if possible

to fulfill the space requirement. A set of simulation runs

were performed to study the effects of the change in core

management strategy. The simulation model was run for

60 seconds with three users on the system repeating the

benchmark task outlined earlier. Typical runs indicated that

the number of core shifts during a 60 second period would be

reduced from 250 to l+O with the change in strategy from core

shift only to core shift only if no exact match found and from

40 to l with the change in strategy from core shift only if no

exact match found to core shift only if not enough consecutive

hole space exists. Corresponding to these figures the time spent

by the CPU in the user state typically increased from 19 sec. to

24 sec. and from 24 sec. to 27 sec. respectively. This amounts

to a dramatic reduction in the number of core shifts required to

manage core and an almost 50% increase in throughput for the

system. Needless to say this improvement in core management

strategy was implemented in the operating system.

- 20 -

Table 3 lists the results of simulations and

measurements for the improved version of O.S. #2 for the

same benchmark tasks as used to obtain the numbers in

Tables 1 and 2. The statistical data portrayed in Tables 1,

2 and 3 bring out some of the important features of the

operating systems under study. In all of the benchmark tasks

monitored for the various versions of the operating system,

the user time is of course constant but the system overhead

time for the second operating system is down by a factor of

two from that for the first operating system. For the improved

version of O.S. #2 the system time is decreased somewhat more.

Most important of all, the idle time for the improved version

of O.S. #2 has been reduced by a further 40% over the factor of

four improvement of O.S. #2 over O.S. #1. Divid:1ngthe benchmark

task up between five users has further decreased the response

time from 12.7 seconds to 10.3 seconds for the improved version

of o.s. #2. This is a measure of how well the users "mix" or

share resources in the multi-programming environment. The

improvement in core allocation strategy has all but eliminated

the need for core shifts. This is much more important in O.S. #2

than in O.S. #1 as in O.S. #2 almost all disk transfers are disk

sensitive tasks and the disk is being utilized a large fraction

of the time. Thus there 1s a much smaller probability of having tc

inhibit disk activity due to a core shift in progress or vice vers:

- 21 -

of having to inhibit a core shift due to a disk sensitive

task in progress. The disk utilization time has been reduced

considerably by the implementation of random ID allocation.

This indicates a smaller average disk access time and more

effective servicing of the disk queue entries. The total time

to process a task or a number of users is very dependent on

the efficiency of the disk handler routine.

The results for the average disk access time and the

average word transfer rate for the various operating systems

studied are summarized in Figures J.4 and 5 respectively. The

average disk access time decreases quite rapidly as a function

of the number of concurrent users for O.S. #2 and even more so

for the improved version of O.S. #2 but is almost a constant

for O.S. #1. Similarly the word transfer rate to and from disk

under operating system #2 increases quite satisfactorily as the

number of simultaneous users increases. However, for O.S. #1

the word transfer rate is almost insensitive to the number of

concurrent users. Clearly O.S. #2 and even more so the improved

version of O.S. #2 handle the disk queue much more effectively

than O.S. #1. Users "mix" or share system resources much more

efficiently under operating system #2.

6.0 SOME TWO-LEVEL MEMORY CONSIDERATIONS

A two-level memory hierarchy has certain limitations

which must be taken lnto account in order t<J make E!'f1c 1 e n t;

use of secondary storage. The access time of a two-level

memory structure is given by:

- 22 -

t = f(l+ar)

where f - access time for the fast memory,

r = ratio of access time of the slow memory
to that of the fast one, and

a = fraction of all accesses that must be made
to the slow memory.

For the Honeywell DDP-516 system under discussion, f ~ 1 µsec

and r .'.:!:: 10 msec/1 µsec = 10,000 for a moderate number of

users on the system. It is difficult to get a to approach

1/10,000 for a system with only 4K words of user space. Thus thE

average access time for this memory structure cannot approach

that of the fast memory.

The utilization factor of a disk can be defined as:

t u = ---
t + d

where d - dead-time due to rotational latency, and

t = data transfer time.

For an average number of requests on the disk queue N for a

disk with a time T for one rotation of the disk,

d = __ 't'_
N + 1

To transfer a block of data (64 words) from disk requires,

- 23 -

For N = 9, the disk utilization factor is in the order of

10%. The maximum word transfer rate from disk, i.e., the

bandwidth of disk is 5880 x 30 = 176,400 words per second.

This compares with a core bandwidth of about 1 million words

per second. Even with five active users on the system the

9,200 disk utilization factor is only about 176,400, i.e., slightly

greater than 5%. This corresponds to an average number of

requests on the disk queue of about six.

6.1 Discussion of Critical System Parameters

There are certain system parameters which can be

optimized for an efficient operating system. The disk delay

(DSKDEL), i.e., the time to determine which is the next disk

activity to initiate for a minimum access time, is one such

parameter. Both simulation runs and actual runs on the system

indicate that the best value for this parameter is about

20 sectors (8 words per sector). As shown in Figure 6 the

through-put of the system as measured by the user time forms

a broad maximum in the region of DSKDEL = 20. This corresponds

to Just slightly more than the average processor time taken to

search the disk queue. A simulation run assuming a hardware

queuer and server demonstrated that the through-put of the

system could be increased by about 8%.

A second parameter which can be optimized is MINCR,

the minimum core request when core space is required for a

- 24 -

segment. Then when say 128 words of core are required for

a segment, a minimum of MINCR words of core are freed up if

possible. The optimum value of this parameter was found to

be about 1024 words for good response and through-put in the

types of tasks simulated in this study. However, the optimum

value of this parameter is almost certainly a function of the

memory size, the types of tasks and their mix.

A third parameter is the size of the data segments

themselves. A size of 64 words was chosen for this system for

a number of reasons. This size is compatible with a multi­

programming system which may have many segments in core

simultaneously providing for ease of core management. In

fact all program segments are multiples of 64 to simplify

core management. The amount of data which a user wishes to

access at any one time is rarely more than 64 words. Actually

taking into account the time to transfer a block from disk and

the time taken by the processor to process the block, a size of

64 words strikes a happy medium as will be shown in the

following discussion.

The time to transfer a block, size n, from disk is

given by:

where t = time to access start of block, and a
tw = time to transfer one word.

- 25 -

The time for the processor to process a block, size n, is

given by:

where t
8

= time to initiate block transmission, and

tk = time to process one word.

One can then define the ratio of these as:

for which u > 1 the system is processor bQund,

u = 1 the system is balanced, and

u < 1 the system is I/¢ bound.

From this the desired block size for a balanced system is

given by,

In a typical text editor application in which one is copying

a file, the times are approximately,

ta= 10 msec.

ts= 1 rnsec.

tk = 300 µsec.

5 µsec.

ln an eriv1ronment of 3 to 4 users, Then the optimum block

size ls n ~ 30 words. However, in another typical text editor

- 26 -

operation in which one deletes the file from which the

new file has been copied, the time to process one word

is about 30 µsec and then the optimum block size is

n ~ 360 words. Assuming that one is accessing files much

more frequently than one is deleting them, a data block

size of 64 words is a reasonable compromise between the two

extremes and still compatible with the core size limitations.

7.0 FURTHER SIMULATION RESULTS ON O.S. #2

All other simulation results and measurements were

obtained with the parameters fixed at the values discussed

in the previous section. The operating system is the improved

version of O.S. #2 with random allocation of ID's and almost

complete elimination of core shifts implemented in the system.

The benchmark task used was the same as outlined previously

with the exception that the file size simulated was 15,000

characters regardless of the number of users on the system.

The benchmark tasks were run repeatedly for a total time of

60 seconds as a function of the number of users from one to

eight. The operating system features studied include:

(1) response - time to complete one benchmark task

(2) through-put - as measured by the user time

(3) average disk access time

(4) average word transfer rate

(5) processor utilization - idle

- system

- user

- 27 -

all as a function of the number of users on the system and

as a function of disk speed, memory size and memory speed.

7.1 System Features as a Function of Disk Speed

The basic system configuration consists of BK of l µsec

memory and an 1800 RPM, 376,000 word disk. The results of the

simulation runs and of the measurements on the basic configura­

tion are summarized in Figure 7. The simulated and measured

results are in close agreement in the region from 1 to 3 users

where the results can be compared. It is noted that the idle

time approaches a minimum for eight users such that more

efficient use cannot be made of the processor by adding more

users. The overhead time, i.e. the system time increases

quite rapidly as a function of the number of users. This

can be attributed to the larger number of thread changes taking

place and the greater amount of core memory management required,

User time or through-put increases almost linearly as a functior

of the number of users, indicating an effective sharing of

the system resources. The disk utilization time stays almost

constant at slightly less than 75% of the total time

simulated.

The next system configuration simulated has the same

features as the basic configuration but now has a higher speed

disk, i.e., 3600 RPM, but still with 376,000 words. The

simulation run results are summarized in Figure 8. There are

- 28 -

no measured results to compare with but the success of the

simulation model in predicting performance for the basic

system gives one confidence that the results are indeed valid.

The disk activity has been modelled in detail so that the disk's

angular position is a function of time and so that the disk

delay necessary to determine the next best queue entry to

service, is included. As would be expected the through-put

for one user is greater than with the 1800 RPM disk, but

certainly not twice as great. This is partly due to the fact

that the system is no longer as well balanced as it was designed

to be for the 1800 RPM disk and also partly due to the fact that

the system is not disk-bound. The disk utilization time is even

less now as the average disk access time has been shortened.

The through-put certainly increases as the number of users

increases but not as quickly as for the basic system. This

can be attributed to the fact that the 3600 RPM disk system

becomes processor-bound much more quickly than the 1800 RPM disk

system. Beyond about 6 users the idle time actually increases

slightly while through-put levels off. At first glance this

may seem surprising but there is an explanation for this behavior.

As the number of users increases, memory becomes heavily occupied,

i.e., more and more segments are tied down in core and cannot be

pushed out when more space is required. The number of entries

put on the disk queue for service when core space is required is

net as great as would have been possible if there were fewer

- 29 -

users and hence less memory was tied down. The queue cannot

be serviced as efficiently now with the result that the

average disk access time actually increases thereby reducing

the total through-put. This effect is not as noticeable with

the 1800 RPM disk as the disk delay time is a smaller fraction

of the disk rotation time. As the disk delay time becomes a

larger fraction of the disk rotation time, the chance of a

queue entry's disk address falling in this area becomes greater.

An entry whose disk address falls in this critical area cannot

be serviced until a full disk revolution later. A few simulation

runs with a smaller disk delay time indicated that the idle time

was a very sensitive function of the disk delay time. In fact

the idle time curve did flatten out rather than turn up when

the disk delay time was decreased towards the idealistic value

of zero.

The same system configuration was again simulated,

this time with a 376,000 word disk running at 900 RPM. The

results are portrayed in Figure 9. As might be expected the

system is highly disk-bound with the disk utilization time

approaching 100% of the total simulated time. The through-put

for one user is much less than for the higher speed disks

simulated previously. Two more users are easily handled

by the system but beyond three users the through-put is not

increased significantly. The problem again becomes one of

memory restrictions.

- 30 -

For the various speed disk systems simulated, the

optimum number of users would appear to be about five, from

the point of view of through-put. The important thing to realize

here is that through-put does not increase in direct proportion

to disk speed. The percentage increase in through-put from the

900 RPM disk system to the 1800 RPM disk system is much greater

than from the 1800 RPM disk system to the 3600 RPM disk system.

This can be attributed to the fact that as the disk speed is

increased the system becomes more and more processor bound.

7.2 System Features as a Function of Memory Size

Another parameter which can be varied in the simulation

model and in the actual system to some extent also, is the size

of memory available to the user. Some preliminary measurements

and simulations were carried out to demonstrate in detail the

effects of varying the memory size. A benchmark task dealing

with a file of 6000 characters was run for a total of 60 seconds

for various values of available memory size with only one user on

the system. The results of the measurements and of the simulation

runs are compared in Figure 10. The reason for choosing a file

length of eoco characters is that a file of this length would fit

completely in a memory size of ~9500 words. This represents

an extreme case and hence a useful data point. In the region of

8K or fewer words where the simulated and measured results can be

compared, there is close agreement. The simulated results have

been carried beyond the point where the complete file fits in

- 31 -

memory. Of course at this point idle time and disk utilization

time drop to essentially zero. The through-put increases at a

faster rate than linear. Interestingly enough the

system time does not increase appreciably. This can be attributed

to a simplified core management task for a larger core size.

Figure 11 shows the corresponding response time as a function of

memory size. The response time, which here is defined as the total

time to complete one benchmark task, decreases approximately

inversely as the memory size available to the user. Of course

when the complete file can be contained in memory, response is

at a minimum of 1.15 seconds. With an 8K memory size the response

time is only about a factor of two greater. This seems like a

reasonable response for a virtual memory system.

To further study the effects of increasing the size of

memory, it was decided to simulate the system with the three

different disk speeds as before but now with an extra 4K of memory

added on to effectively double the core space available to the user.

Figure 12 shows the results of the simulation runs for the 1800 RPM

disk with 12K of core. It is obvious that the through-put is

increased for a larger core size but the percentage increase over

the through-put for the 8K system is greater for a small number of

users than for a larger number of users. The corresponding results

for the 3600 RPM and 900 RPM disk systems with 12K of core are

sh0wn in Figures 13 and 14. The same basic conclusions can be

drawn for these systems as for the 1800 RPM disk system. Note

- 32 -

that for all systems, the idle time does decrease as a function

of the number of users and does not increase for eight users

above what it is for five users as it did in the case of 8K of

core and the 3600 RPM disk. The improvement is a result of

less severe core restrictions. Again it can be noted here that

the increase in through-put of the system is not directly

proportional to the amount of core space available to the users.

7.3 System Features as a Function of Memory Speed

A third system design parameter which one can vary

is the speed of memory. Here the effects of doubling the speed

of memory and hence cutting the cycle time of the processor in

half are studied via simulation. The results of a series of

simulation runs for an 8K computer supported by an 1800 RPM

disk are shown in Figure 15. As expected this system is highly

disk-bound as it is not properly balanced for a 0.5 µsec memory.

Through-put increases linearly with the number of users and shows

little sign of slackening off with up to 8 users. With slower

memory, 5 users was about the optimum number of users.

The results as shown in Figure 15 were given further

credibility by simulating the same system, this time with a

3600 RPM disk. As expected the response time was one-half of

that for the basic system with an 1800 RPM disk and a 1 µsec cycle

time. Essentially the time scale has been cut by a factor of two.

Processor speed has a very marked effect on response time of the

system.

- 33 -

7.4 Comparison of the Various System Configuration
Simulation Results

A better perspective of the results of changes in

disk speed, memory size and memory speed can be gained from a

study of Figures 16 and 17. Figure 16 displays the average

disk access time as a function of the number of users for all

of the variations in disk speed, memory size and memory speed

studied. The increase in disk rotation speed certainly decreases

the average disk access time but not in direct proportion to the

increase. Increasing memory size has only a small effect on the

average disk access time, but in all cases it does have a

marked effect when there are many users on the system. There

is no upturn in average disk access time with eight users as

there was with the 8K memory. The reduction in disk access time

as a function of the number of users is most dramatic in the

case of a faster memory cycle time, decreasing from eleven to

about five milliseconds for eight users.

Figure 17 shows the response time for the benchmark task

in question as a function of the number of users for the various

values of disk speed, memory size and memory speed simulated.

Increasing core size for the 900 RPM disk system has a marked

effect on response as now a larger fraction of the user's file is

held in core and less disk accessing is required. Even for the

1800 RPM disk system the decrease in response time is appreciable

for a larger memory size. However for the 3600 RPM disk system

the effect of increasing core size is less noticeable. Doubling

- 34 -

the speed of memory has the most pronounced effect on response

time. The slope of the curve on Figure 17 corresponding to a

higher speed memory is much less than that of the other curves

for the 1 µsec memory. Of the three major parameters varied in

the system design, memory speed is the most important one.

8.0 AN ECONOMIC MODEL OF THE SYSTEM

The simulation results have given a quantitative measure

of the effects of changes in the hardware configuration and changes

in software strategy, e.g., ID allocation and memory management.

However, one would like to give a dollar value to the cost

effectiveness of these changes. Hence we propose a simple model

of a multi-programming virtual memory system (as outlined in this

paper) which can support up to eight users who are using the

system for data retrieval and file updating and thus accessing

files in a manner similar to that simulated in the benchmark

tasks. We give a dollar value to each piece of hardware in the

system based on a per unit cost for a quantity of about fifty such

systems. Then for each hardware addition or removal the total

cost of the system is adjusted accordingly. The estimated cost

for each piece of hardware is listed in Table 4 and is assumed to

represent today's (1970) market prices fairly closely. Thus for

each system configuration, it would cost about $2000 to add

communication hardware to support an additional user terminal.

The cost of a basic system supporting only one terminal would

be $26,000.

-35 -

There are two ways of measuring the cost effectiveness

of the changes in the hardware configuration. One method is to

look at the variation in the product of the total cost per user

times the response time of the system. The longer the response

time that each user sees the more expensive it becomes for a

user to execute a certain task. A second method is to look at

the variation in the total cost per unit of through-put. Here

the user time per given time interval obtained in the simulation

runs is used as a measure of useful system through-put. Actually

it turns out that the resulting curves are of similar shape and

the corresponding relative values on the curves are almost

identical. This is to be expected as response is almost inversely

proportional to through-put per user.

Figures 18 and 19 display the results obtained for this

study making the assumptions outlined above for eight different

system configurations. Figure 18 gives the relative cost ratio

obtained as a product of the total system cost per Uf:Er and the

response time of the system to the benchmark task. Figure 19

gives the relative total system cost per unit of through-put. An

analysis of the curves leads to some surprising results. Consider

the effect of the increase in disk speed. For each different disk

speed simulated the increased disk speed pays for itself in terms

of improved performance. However for more than five users the

system becomes more expensive to operate, i.e., cost performance

- 36 -

deteriorates. For more than 6 or 7 users the 3600 RPM disk

does not pay for itself when compared to the 1800 RPM disk.

Increasing memory size from 8K to 12K for each different disk

speed improves the cost performance when there is only one

active user on the system. For three or more users on the

system the extra 4K of core does not pay for itself, i.e., the

response may improve with more memory but not enough to offset

the extra core costs. The explanation for this is that the

memory management algorithm used does not know which segments

to throw out when making space. Thus to perform the benchmark

task the whole file must be paraded into core three times.

Having a larger core only means a slightly increased probability

that the data segments which are to be accessed will be in core

memory when needed. Hence extra core 1s really only helpful when

file sizes are small and one can be guaranteed that most of the

file will remain in core while it is being accessed. If the

greater part of the file does not remain in core during accessing,

extra core will not be beneficial unless it is large enough to

contain the greater part of all user files being accessed.

Higher speed memory is seen to be very cost effective.

The doubling in memory speed actually doubles the processing power

of the CPU. For one or two users the system is more expensive

than the other configurations modelled. However, if the system

is meant to support three or more users it is more cost effective

than any of the other configurations. In fact as the number of

- 37 -

users on the system increases the relative cost of the system

decreases whereas for the other configurations there is a

definite turning point at about five users beyond which the

relative cost increases. Even a faster disk improves the cost

effectiveness as the system is disk-bound with a 0.5 µsec memory.

However, for eight users the cost effectiveness is not much

improved over that for five users. With the larger number of

users the system again becomes core limited and processor-bound

as with the basic system configuration.

For all configurations simulated here except for

the 0.5 µsec memory system the optimum number of users seems to

be about five. For fast memory the more users the less the

relative cost for the system is (up to about eight users).

This economic model of the system brings to light, not the

factors which improve the response and through-put of the system,

but rather the factors which improve response and through-put

enough to produce an economical saving. It must be noted that

the results obtained here assume that the users are busy 100%

of the time, i.e., no "think time" has been included in the

system model. No factor has been included to take into considera­

tion the cost of human time which would make poor response expensivE

The number of users referred to on the x-axes of all the

relevant figures is actually the number which are busy 100%

of the time while other users may be in an idle state. Thus

the number of users is really to be regarded as a statistical

- 38 -

average of the number of users waiting for a response from

the system.

9.0 CONCLUSIONS

The slmulation and measurement results have suggested

some further improvements in the operating system. For instance,

the rewind operation in the TEXT editor has been simplified by

storing the starting ID of the current file being accessed. Thus

when one wishes to rewind the file, one merely links up to the

starting ID. Previously one would read in each segment of the

file using the back pointing ID to get to each preceding data

block until the beginning of the file was reached. This was

primarily a disk-bound operation. Another improvement which is

presently being implemented is the breaking up of some large program

segments into smaller ones so as to ease the eore management task

by providing for an easier flow of smaller program blocks into

exlst:tng holes 1n eore. This also has the advantage of diminishing

the amount of memory occupied by each user at any one time and

thus provides for better interaction and less severe core

restrictions.

The implementation of meters on the computer system

portraying the allocation of the system resources has proven

very useful in providing insight into the operating system. The

meters give a dynrunic picture of the use of the system resources

as various types and mixtur~of programs are being run. Hence it

- 39 -

is an easy matter to determine whether the system is disk-bound

or processor-bound. The meters show up the system bottlenecks

instantly whereas software measurements and simulation results

usually require some further analysis to determine the bottlenecks.

This paper has given quantitative measurements of a

particular operating system in a multi-programming, virtual memory

environment. These measurements and the simulation results have

given insight into the operating system and provided a good under­

standing of the factors which affect the through-put and response

of such a system. The simulation of the basic model has given a

good reference on which to base further simulations of modified

versions of both the operating system and the hardware configura­

tion of the system. The economic model proposed has given an

insight into which possible improvements to the system would

prove to be cost effective. Increasing processor speed is by far

the most economical improvement provided the system is being

utilized by more than two users for a good fraction of the time.

It is hoped that the results presented in this paper

will prove useful in the design of operating systems for small

computer systems, especially those which depend heavily on core

management and disk I/0 activity. The optimization of these two

. --. ac t Lv I ti.es has been found to be of extreme importance in maximizing

the through-put of the system described here.

- 40 -

ACKNOWLEDGMENT

The author wishes to thank H. S. McDonald for his

aid in formulating an economic model of the computer system.

·fl rv~Ll-,~~
MH-1383-HL-RP H. LYCKLAMA

Att.
References
Tables 1-4
List of Figures
Figures 1-19

REFERENCES

(1)

(2)

(3)

(4)

(5)

C. Christensen, A. D. Hause. "A Multi-programming Virtual
Memory System for a Small Computer", AFIPS - Conference
Proceedings, Vol.36, 1970, pp 683-690.

D. R. Weller. 11A Loop Communication System for I/0 to a
Small Multi-User Computer", MM70-1384-l.

H. Herscovitch, T. H. Schneider. "GPSS III - An Expanded
General Purpose Simulator," IIM Systems Jou.rnal, Vol. 4,
No. 3, pp 174-183, 1965.

H. M. Markowitz, B. Hausner, H. W. Karr. "SIMSCRIPT: A
Simulation Programming Language", Prentice-Hall, 1963.

O. Dahl, K. Nygaard, "SIMULA - an ALGOL-based Simulation
Language", Comm. of ACM, Vol 9, No. 9, pp 671-678,
September 1966. - -

')

Users TIME TIDL TUSR TSYS TMDUT TMDTF TMDSF TMCSF TMDDP TMIDF NCSFT NCTHD NDSKI

Simulated lt 78. 7 67.1 5.2 6.4 72.6 35-9 21.3 1.4 20.2 44.6 90 - 3350

Measured lt 79 68 5 6 71 34 21 1 22 45 85 - 3400

Simulated 2* 71.8 59.8 5.2 6.8 69.8 37.3 23.3 2.3 34 48 120 560 3400

Measured 2* 72.5 60.5 5 7 68 35 22 2 40 53 105 540 3400

Simulated 5* 59.1 44.5 5-3 9.3 57-9 36.0 16.3 3.1 35 41.1 170 650 3350

t 30,000 character file

* 15,000 character file each

* 6,000 character file each

TABLE 1

)

Users TIME TIDL TUSR TSYS TMDUT NCSFT NCTHD NDSKI

lt 24 16 5 3 19 6 - 900

2* 16 8 5 3 14 7 460 1020

5* 12.7 4.2 5.2 3.3 9.6 5 385 960

t 30,000 character file

* 15,000 character file each

* 6,000 character file each (simulated)

TABLE 2

:)

Users TIME TIDL TUSR TSYS TMDUT NCSFT NCTHD NDSKI

Simulated lt 17.2 9.7 5.2 2.3 11.9 0 - 979

Measured lt 17.6 10.0 5.3 2.3 12.3 0 - 982

Simulated 2* 14.6 6.5 5.2 2.9 11.5 1 440 990

Measured 2* 14.7 6.4 5.3 3.0 12.0 1 458 1020

Simulated 5* 10.5 2.3 5.1 3.1 7.1 2 493 1012

t 30,000 character file

i 15,000 character file each

* 6,000 character file each

TABLE 3

Price List of Computer System Components

Processor $ 4,000

8K Memory (1 µsec, 16-bit words) 10,000

12K Memory (1 µsec, 16-bit words) 14,000

8K Memory (. 5 usec , 16-bit words) 20,000

Disk (32 track, ½M words, 900 RPM) 6,000

Disk (64 track, l.M words, 1800 RPM) 8,000 2

Disk (128 track, ½M words, 3600 RPM) 12,000

Terminal 2,000

General Interface 2,000

TABLE 4

LIST OF FIGURES

Fig. 1. Hardware configuration

Fig. 2. Disk Map (o.s. #1)

Fig. 3. Disk Map (o.s. #2)

Fig. 4. Average disk access times for the various operating
systems

Fig. 5. Secondary word transfer rates for the various O.S.'s

Fig. 6. Effects of varying disk delay time

Fig. 7. Simulation results for basic system (1800 RPM disk)

Fig. 8. Simulation results for 3600 RPM disk system

Fig. 9. Simulation results for 900 RPM disk system

Fig. 10. Processor usage as a function of memory size for
one user

Fig. 11. Response time as a function of memory size for
one user

Fig. 12. Simulation results for 1800 RPM disk, 12K of
1 µ.sec memory

Fig. 13. Simulation results for 3600 RPM disk, 12K of
1 µ.sec memory

Fig. 14. Simulation results for 900 RPM disk, 12K of
1 µsec memory

Fig. 15. Simulation results for 1800 RPM disk, 8K of
0.5 µ.sec memory

Fig. 16. Average disk access time as a function of number of
users for the various system configurations

Fig. 17. Response time as a function of number of users for the
various system configurations

Fig. 18. Relative cost per user times response time for various
system configurations

Fig. 19. Relative cost/CPU time unit for various system
configurations

HARDWARE CONFIGURATION

LINK TO
GE-635

CD0@000
USAGE METERS

201
DP

4K
SYSTEM

PROGRAMS 600 CARO/MIN
CARD R ADER

DDP-516
COMPUTER

TTY
TERMINAL

TTY
TERMINAL

TTY
TERMINAL

I/(/,
LOGIC

lit/,
LOOP
(RING)

TTY
TERMINAL

p
8/1

FIGURE 1

DISK MAP (0. S. N0.1)

T
PROGRAM

DISK STORAGE ORGANIZATION
OPERATING SYSTEM NO.1

DATA

FIGURE 2

DISK MAP (0. S. NO. 2)

NAME TABLE SEGMENTS

-- ...

... .-A
= :,..-e

I~

,,

'w.i
,.,. .,

DISK STORAGE ORGANIZATION
OPERATING SYSTEM N0.2

T
PROGRAM

DATA

FIGURE 3

AVERAGE DISK ACCESS TIMES FOR
THE VARIOUS OPERATING SYSTEMS

20 - u
la.I O.S. N0.1 Cl)
E - la.I
:IE 15 - ~
Cl)
Cl)
la.I
(.)
(.)
ca: 10 O.S. N0.2 :ii.::
Cl) - 0
la.I (O.S. NO. 2)*
(!)
C IMPROVED a:: 5 VERSION la.I
> O.S. N0.2 ca:

1 2 3 4
NUMBER OF USERS

5

FIGURE 4

SECONDARY WORD TRANSFER RATES FOR
THE VARIOUS OPERATING SYSTEMS

10,000

Q z
0 ~ 8,000
U)

a:
LaJ a..
LaJ
!c a: 6,000
a:
LaJ
Lt..
U)
z ca: a:
t- 4,000
Q a:
0 •
LaJ
<.!)

~ 2,000
LaJ

~

* c(O.S.NO.2)
' IMPROVED

VERSION

O.S. NO. 2

&----0----------oO.S. N0.1

1 2 3 4
NUMBER OF USERS

5

FIGURE 5

EFFECTS OF VARYING DISK DELAY TIME

50

40

- 30 u
l&I
Cl) -

DISK UTILIZATION TIME

l&J
i!

20

USER TIME

IDLE TIME

SYSTEM TIME

10

0 20
DISK DELAY (NO. OF SECTORS)

40

FIGURE 6

SIMULATION RESULTS FOR BASIC SYSTEM (1800 RPM DISK)

50

BASIC SYSTEM CONFIGURATION
1800 RPM DI SK

9K 1µ.SEC MEMORY

DISK UTILIZATION

40

- ~ 30
Cl) -

20

10

X SIMULATED RESULTS
o MEASURED RESULTS

1 2 3 4 5 6
USERS

7 8

FIGURE 7

SIMULATION RESULTS FOR 3600 RPM DISK SYSTEM
60

50

40

- • u
1M

!? 30
&&.I
:IE

3600 RPM DISK
9K 1 µ.SEC. MEMORY

X SIMULATED RESULTS

USER TIME

X

- t-
SYSTEM TIME

1 2 3 4 5 6 7 8
USERS

FIGURE 8

SIMULATION RESULTS FOR 900 RPM DISK SYSTEM

60 900 RPM DISK
ek tp. SEC. MEMORY

X

50

X SIMULATION RESULTS

- 0
LI.I

~ 30
La.I
::E - I-

IDLE TIME
20

1 2 3 4 5 6 7 8
USERS

FIGURE 9

PROCESSOR USAGE AS A FUNCTION OF MEMORY SIZE
FOR ONE USER

50

40

- 0 30
~ -

20

10

X SIMULATED RESULTS
o MEASURED RESULTS

(1 USER)

6000 7000 8000
TOP OF CORE

9000 10,000

FIGURE 10

RESPONSE TIME AS A FUNCTION OF
MEMORY SIZE FOR ONE USER

4

3
c3 w
Cl) - IA.I
2
.:: 2
w
Cl) z
0 a.
Cl)
l&J
a:: 1

X SIMULATED RE SUL TS
O MEASURED RESULTS

(1 USER)

6.000 7,000 8,000 9,000
TOP OF CORE

10,000

FIGURE 11

SIMULATION RESULTS FOR 1800 RPM DISK SYSTEM
WITH 12K OF 1 p.SEC. MEMORY

50

40

1800 RPM DISK
12 K 1 fLSEC MEMORY

DISK UTILIZATION TIME

_ 30
0
l&.I
U) - X SIMULATED RESULTS
l&.I :a - t- 20

1 2 3 4 5 6 7 8
USERS

FIGURE 12

SIMULATION RESULTS FOR 3600 RPM DISK
SYSTEM WITH 12K OF 1pSEC MEMORY

50

40

3600 RPM
12k tµ.SEC. MEMORY

X SIMULATION RESULTS

USER TIME

-
-

DISK UTILIZATION TIME

1 2 3 4 5 6 7 8
USERS

FIGURE 13

SIMULATION RESULTS FOR 900 RPM DISK
SYSTEM WITH 12K OF 1 p. SEC MEMORY

60 900 RPM DISK
12K 1µ.SEC ME.MORY

50
DISK UTILIZATION TIME

40

- u
t.,J
U)

- 30
t.,J
:a -

40

1 2 4 5 6 7 8
USERS

FIGURE 14

SIMULATION RESULTS FOR 1800 RPM DISK
SYSTEM WITH eK OF 0.5fLSEC MEMORY

60
-r----!-'DISK UTILIZATION TIME

X

50

40

1800 RPM DISK
5K 0.5µ.SEC MEMORY

X SIMULATION RESULTS

-

20

2 3 5
USERS

8

FIGURE 15

AVERAGE DISK ACCESS TIME FOR THE VARIOUS
SYSTEM CONFIGURATIONS

- u
l&J
(I)

-S 16

o MEASURED RESULTS
x SIMULATED RESULTS

- ...
~ 12
l&J u u
ct

1 2 3 4 5 6 7 8
USERS

© 1800 RPM DISK,8K 1µ.SEC MEMORY
@ 1800 RPM DISK,f2K 1µ.SEC MEMORY

(3) 3600 RPM DISK, aK 1 µ. SEC MEMORY
@ 3600 RPM DISK, 12Kfµ.SEC MEMORY

@ 900 RPM DISK, aK 1µ.SEC MEMORY
@ 900 RPM DISK,12K 1 µ.SEC MEMORY
<i) 1800 RPM DISK, eK 0.5 µ.SE_C MEMORY

FIGURE 16

RESPONSE TIME FOR THE VARIOUS SYSTEM CONFIGURATIONS

50

40

- u
LLI

!?. 30
LLI
Cl)
z
0
CL
f3 20 a::

~ SIMULATED RESULTS

10

1 2 3 4 5 6 7 8
USERS

© f800 RPM DISK, sK 1µSEC MEMORY

(2) 1800 RPM DISK,f2K 1µ._SEC MEMORY

@ 3600 RPM DISK, 9K 1 µSEC MEMORY

@ 3600 RPM DISK,12K 1µSEC MEMORY

@ 900 RPM DISK, sK fµ.SEC MEMORY

@ 900 RPM DISK,f2K 1µSEC MEMORY

(i) 1800 RPM DISK,8K 0.5µSEC MEMORY

FIGURE 17

RELATIVE COST PER USER TIMES RESPONSE
TIME FOR VARIOUS SYSTEM CONFIGURATIONS

®

245

~ 220
~ a::
(I)

8 195

-
<t
~ 170 a::

445

f 2 3 4 5 6 7 8
USERS

© f800 RPM DISK, aK 1µ.SEC MEMORY @ 900 RPM DISK, aK fµ.SEC MEMORY

-~ ~ f800 RPM DISK,f2K 1µSEC MEMORY @ 900 RPM DISK,42K 1 µSEC MEMORY
@ 3600 RPM DISK,aK fµ.SEC MEMORY (i) 1800 RPM DISK,aK 0.5µ.·SEC MEMORY
@ 3600 RPM DISK,12K tµSEC MEMORY (S) 3600 RPM DISK,eK 0.5µ.SEC MEMORY

FIGURE 18

'

RELATIVE COST/CPU TIME UNIT FOR VARIOUS
SYSTEM CONFIGURATIONS

®
460

....
z 140 :::)

LI.I
:E
~

~ 120
(.)

.:::-
Cl)

8
~ 100
~
-I
LI.I a:

80

1 2 3 4 5 6 7 8
USERS

© 1800 RPM DISK 9K 1JLSEC MEMORY (ID 900 RPM DISK, 9K 4 JLSEC MEMORY
(2) 1800 RPM DISK,12K 1µ. SEC MEMORY @ 900 RPM DISK,f2K 1µ.SEC MEMORY
(3) 3600 RPM DISK,8K1µ.SEC MEMORY (i) 1800 RPM DISK,8K 0.5µ.SEC MEMORY
@ 3600RPM DISK,12K1µ.SECMEMORY CB) 3600 RPM DISK,8K 0.5JLSEC MEMORY '

FIGURE 19

