include/zconf.h 444 2000 51 3104 6650542205 7030 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)zconf.h 5.1 (Berkeley) 1/18/99 */ /* $Id: zconf.h,v 1.1.1.1 1997/03/19 15:06:40 kivinen Exp $ */ #ifndef _ZCONF_H #define _ZCONF_H #define const /* Maximum value for memLevel in deflateInit2 */ #ifndef MAX_MEM_LEVEL # define MAX_MEM_LEVEL 9 #endif /* Maximum value for windowBits in deflateInit2 and inflateInit2 */ #ifndef MAX_WBITS # define MAX_WBITS 15 /* 32K LZ77 window */ #endif /* The memory requirements for deflate are (in bytes): 1 << (windowBits+2) + 1 << (memLevel+9) that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) plus a few kilobytes for small objects. For example, if you want to reduce the default memory requirements from 256K to 128K, compile with make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" Of course this will generally degrade compression (there's no free lunch). The memory requirements for inflate are (in bytes) 1 << windowBits that is, 32K for windowBits=15 (default value) plus a few kilobytes for small objects. */ /* Type declarations */ #define OF(args) () #define FAR typedef unsigned char Byte; /* 8 bits */ typedef unsigned int uInt; /* 16 bits or more */ typedef unsigned long uLong; /* 32 bits or more */ typedef Byte FAR Bytef; typedef char FAR charf; typedef int FAR intf; typedef uInt FAR uIntf; typedef uLong FAR uLongf; typedef Byte FAR *voidpf; typedef Byte *voidp; #define EXPORT #endif /* _ZCONF_H */ 15 (default value) plus a few kilobytes for small objects. */ /* Type declarations */ #define OF(args) () #define FAR typedef unsigned char Byte; /* 8 bits */ typedef unsigned int uInt; /* 16 bits or more */ typedef unsigned long uLong; /* 32 bits or more */ typedef Byte FAR Bytef; typedef char FAR charf; typedef int FAR intf; typedef uInt FAR uIntf; typedef uLong FAR uLongf; typedef Byte FAR *voidinclude/zlib.h 444 2000 51 102645 6651226365 6732 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)zlib.h 5.2 (Berkeley) 1/19/99 */ #ifndef _ZLIB_H #define _ZLIB_H #include #define ZLIB_VERSION "1.0.4" /* The 'zlib' compression library provides in-memory compression and decompression functions, including integrity checks of the uncompressed data. This version of the library supports only one compression method (deflation) but other algorithms may be added later and will have the same stream interface. For compression the application must provide the output buffer and may optionally provide the input buffer for optimization. For decompression, the application must provide the input buffer and may optionally provide the output buffer for optimization. Compression can be done in a single step if the buffers are large enough (for example if an input file is mmap'ed), or can be done by repeated calls of the compression function. In the latter case, the application must provide more input and/or consume the output (providing more output space) before each call. The library does not install any signal handler. It is recommended to add at least a handler for SIGSEGV when decompressing; the library checks the consistency of the input data whenever possible but may go nuts for some forms of corrupted input. */ typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size)); typedef void (*free_func) OF((voidpf opaque, voidpf address)); struct internal_state; typedef struct z_stream_s { Bytef *next_in; /* next input byte */ uInt avail_in; /* number of bytes available at next_in */ uLong total_in; /* total nb of input bytes read so far */ Bytef *next_out; /* next output byte should be put there */ uInt avail_out; /* remaining free space at next_out */ uLong total_out; /* total nb of bytes output so far */ char *msg; /* last error message, NULL if no error */ struct internal_state FAR *state; /* not visible by applications */ alloc_func zalloc; /* used to allocate the internal state */ free_func zfree; /* used to free the internal state */ voidpf opaque; /* private data object passed to zalloc and zfree */ int data_type; /* best guess about the data type: ascii or binary */ uLong adler; /* adler32 value of the uncompressed data */ uLong reserved; /* reserved for future use */ } z_stream; typedef z_stream FAR *z_streamp; /* The application must update next_in and avail_in when avail_in has dropped to zero. It must update next_out and avail_out when avail_out has dropped to zero. The application must initialize zalloc, zfree and opaque before calling the init function. All other fields are set by the compression library and must not be updated by the application. The opaque value provided by the application will be passed as the first parameter for calls of zalloc and zfree. This can be useful for custom memory management. The compression library attaches no meaning to the opaque value. zalloc must return Z_NULL if there is not enough memory for the object. On 16-bit systems, the functions zalloc and zfree must be able to allocate exactly 65536 bytes, but will not be required to allocate more than this if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers returned by zalloc for objects of exactly 65536 bytes *must* have their offset normalized to zero. The default allocation function provided by this library ensures this (see zutil.c). To reduce memory requirements and avoid any allocation of 64K objects, at the expense of compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h). The fields total_in and total_out can be used for statistics or progress reports. After compression, total_in holds the total size of the uncompressed data and may be saved for use in the decompressor (particularly if the decompressor wants to decompress everything in a single step). */ /* constants */ #define Z_NO_FLUSH 0 #define Z_PARTIAL_FLUSH 1 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 /* Allowed flush values; see deflate() below for details */ #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) /* Return codes for the compression/decompression functions. Negative * values are errors, positive values are used for special but normal events. */ #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) /* compression levels */ #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_DEFAULT_STRATEGY 0 /* compression strategy; see deflateInit2() below for details */ #define Z_BINARY 0 #define Z_ASCII 1 #define Z_UNKNOWN 2 /* Possible values of the data_type field */ #define Z_DEFLATED 8 /* The deflate compression method (the only one supported in this version) */ #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */ #define zlib_version zlibVersion() /* for compatibility with versions < 1.0.2 */ /* basic functions */ extern const char * EXPORT zlibVersion OF((void)); /* The application can compare zlibVersion and ZLIB_VERSION for consistency. If the first character differs, the library code actually used is not compatible with the zlib.h header file used by the application. This check is automatically made by deflateInit and inflateInit. */ /* extern int EXPORT deflateInit OF((z_streamp strm, int level)); Initializes the internal stream state for compression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit updates them to use default allocation functions. The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION requests a default compromise between speed and compression (currently equivalent to level 6). deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if level is not a valid compression level, Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit does not perform any compression: this will be done by deflate(). */ extern int EXPORT deflate OF((z_streamp strm, int flush)); /* Performs one or both of the following actions: - Compress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in and avail_in are updated and processing will resume at this point for the next call of deflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. This action is forced if the parameter flush is non zero. Forcing flush frequently degrades the compression ratio, so this parameter should be set only when necessary (in interactive applications). Some output may be provided even if flush is not set. Before the call of deflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating avail_in or avail_out accordingly; avail_out should never be zero before the call. The application can consume the compressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. If the parameter flush is set to Z_PARTIAL_FLUSH, the current compression block is terminated and flushed to the output buffer so that the decompressor can get all input data available so far. For method 9, a future variant on method 8, the current block will be flushed but not terminated. Z_SYNC_FLUSH has the same effect as partial flush except that the compressed output is byte aligned (the compressor can clear its internal bit buffer) and the current block is always terminated; this can be useful if the compressor has to be restarted from scratch after an interruption (in which case the internal state of the compressor may be lost). If flush is set to Z_FULL_FLUSH, the compression block is terminated, a special marker is output and the compression dictionary is discarded; this is useful to allow the decompressor to synchronize if one compressed block has been damaged (see inflateSync below). Flushing degrades compression and so should be used only when necessary. Using Z_FULL_FLUSH too often can seriously degrade the compression. If deflate returns with avail_out == 0, this function must be called again with the same value of the flush parameter and more output space (updated avail_out), until the flush is complete (deflate returns with non-zero avail_out). If the parameter flush is set to Z_FINISH, pending input is processed, pending output is flushed and deflate returns with Z_STREAM_END if there was enough output space; if deflate returns with Z_OK, this function must be called again with Z_FINISH and more output space (updated avail_out) but no more input data, until it returns with Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immediately after deflateInit if all the compression is to be done in a single step. In this case, avail_out must be at least 0.1% larger than avail_in plus 12 bytes. If deflate does not return Z_STREAM_END, then it must be called again as described above. deflate() may update data_type if it can make a good guess about the input data type (Z_ASCII or Z_BINARY). In doubt, the data is considered binary. This field is only for information purposes and does not affect the compression algorithm in any manner. deflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if all input has been consumed and all output has been produced (only when flush is set to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible. */ extern int EXPORT deflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent, Z_DATA_ERROR if the stream was freed prematurely (some input or output was discarded). In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* extern int EXPORT inflateInit OF((z_streamp strm)); Initializes the internal stream state for decompression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, inflateInit updates them to use default allocation functions. inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller. msg is set to null if there is no error message. inflateInit does not perform any decompression: this will be done by inflate(). */ extern int EXPORT inflate OF((z_streamp strm, int flush)); /* Performs one or both of the following actions: - Decompress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in is updated and processing will resume at this point for the next call of inflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. inflate() provides as much output as possible, until there is no more input data or no more space in the output buffer (see below about the flush parameter). Before the call of inflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating the next_* and avail_* values accordingly. The application can consume the uncompressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of inflate(). If inflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. If the parameter flush is set to Z_PARTIAL_FLUSH, inflate flushes as much output as possible to the output buffer. The flushing behavior of inflate is not specified for values of the flush parameter other than Z_PARTIAL_FLUSH and Z_FINISH, but the current implementation actually flushes as much output as possible anyway. inflate() should normally be called until it returns Z_STREAM_END or an error. However if all decompression is to be performed in a single step (a single call of inflate), the parameter flush should be set to Z_FINISH. In this case all pending input is processed and all pending output is flushed; avail_out must be large enough to hold all the uncompressed data. (The size of the uncompressed data may have been saved by the compressor for this purpose.) The next operation on this stream must be inflateEnd to deallocate the decompression state. The use of Z_FINISH is never required, but can be used to inform inflate that a faster routine may be used for the single inflate() call. inflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if the end of the compressed data has been reached and all uncompressed output has been produced, Z_NEED_DICT if a preset dictionary is needed at this point (see inflateSetDictionary below), Z_DATA_ERROR if the input data was corrupted, Z_STREAM_ERROR if the stream structure was inconsistent (for example if next_in or next_out was NULL), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if no progress is possible or if there was not enough room in the output buffer when Z_FINISH is used. In the Z_DATA_ERROR case, the application may then call inflateSync to look for a good compression block. In the Z_NEED_DICT case, strm->adler is set to the Adler32 value of the dictionary chosen by the compressor. */ extern int EXPORT inflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent. In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* Advanced functions */ /* The following functions are needed only in some special applications. */ /* extern int EXPORT deflateInit2 OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy)); This is another version of deflateInit with more compression options. The fields next_in, zalloc, zfree and opaque must be initialized before by the caller. The method parameter is the compression method. It must be Z_DEFLATED in this version of the library. (Method 9 will allow a 64K history buffer and partial block flushes.) The windowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should be in the range 8..15 for this version of the library (the value 16 will be allowed for method 9). Larger values of this parameter result in better compression at the expense of memory usage. The default value is 15 if deflateInit is used instead. The memLevel parameter specifies how much memory should be allocated for the internal compression state. memLevel=1 uses minimum memory but is slow and reduces compression ratio; memLevel=9 uses maximum memory for optimal speed. The default value is 8. See zconf.h for total memory usage as a function of windowBits and memLevel. The strategy parameter is used to tune the compression algorithm. Use the value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or predictor), or Z_HUFFMAN_ONLY to force Huffman encoding only (no string match). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between Z_DEFAULT and Z_HUFFMAN_ONLY. The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. If next_in is not null, the library will use this buffer to hold also some history information; the buffer must either hold the entire input data, or have at least 1<<(windowBits+1) bytes and be writable. If next_in is null, the library will allocate its own history buffer (and leave next_in null). next_out need not be provided here but must be provided by the application for the next call of deflate(). If the history buffer is provided by the application, next_in must must never be changed by the application since the compressor maintains information inside this buffer from call to call; the application must provide more input only by increasing avail_in. next_in is always reset by the library in this case. deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if a parameter is invalid (such as an invalid method). msg is set to null if there is no error message. deflateInit2 does not perform any compression: this will be done by deflate(). */ extern int EXPORT deflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the compression dictionary (history buffer) from the given byte sequence without producing any compressed output. This function must be called immediately after deflateInit or deflateInit2, before any call of deflate. The compressor and decompressor must use exactly the same dictionary (see inflateSetDictionary). The dictionary should consist of strings (byte sequences) that are likely to be encountered later in the data to be compressed, with the most commonly used strings preferably put towards the end of the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be predicted with good accuracy; the data can then be compressed better than with the default empty dictionary. In this version of the library, only the last 32K bytes of the dictionary are used. Upon return of this function, strm->adler is set to the Adler32 value of the dictionary; the decompressor may later use this value to determine which dictionary has been used by the compressor. (The Adler32 value applies to the whole dictionary even if only a subset of the dictionary is actually used by the compressor.) deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a parameter is invalid (such as NULL dictionary) or the stream state is inconsistent (for example if deflate has already been called for this stream). deflateSetDictionary does not perform any compression: this will be done by deflate(). */ extern int EXPORT deflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. If the source stream is using an application-supplied history buffer, a new buffer is allocated for the destination stream. The compressed output buffer is always application-supplied. It's the responsibility of the application to provide the correct values of next_out and avail_out for the next call of deflate. This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy duplicates the internal compression state which can be quite large, so this strategy is slow and can consume lots of memory. deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being NULL). msg is left unchanged in both source and destination. */ extern int EXPORT deflateReset OF((z_streamp strm)); /* This function is equivalent to deflateEnd followed by deflateInit, but does not free and reallocate all the internal compression state. The stream will keep the same compression level and any other attributes that may have been set by deflateInit2. deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being NULL). */ extern int EXPORT deflateParams OF((z_streamp strm, int level, int strategy)); /* Dynamically update the compression level and compression strategy. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of deflate(). Before the call of deflateParams, the stream state must be set as for a call of deflate(), since the currently available input may have to be compressed and flushed. In particular, strm->avail_out must be non-zero. deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if strm->avail_out was zero. */ /* extern int EXPORT inflateInit2 OF((z_streamp strm, int windowBits)); This is another version of inflateInit with more compression options. The fields next_out, zalloc, zfree and opaque must be initialized before by the caller. The windowBits parameter is the base two logarithm of the maximum window size (the size of the history buffer). It should be in the range 8..15 for this version of the library (the value 16 will be allowed soon). The default value is 15 if inflateInit is used instead. If a compressed stream with a larger window size is given as input, inflate() will return with the error code Z_DATA_ERROR instead of trying to allocate a larger window. If next_out is not null, the library will use this buffer for the history buffer; the buffer must either be large enough to hold the entire output data, or have at least 1<msg in inflateInit2 before any error return - initialize opaque in example.c, gzio.c, deflate.c and inflate.c - fixed typo in zconf.h (_GNUC__ => __GNUC__) - check for WIN32 in zconf.h and zutil.c (avoid farmalloc in 32-bit mode) - fix typo in Make_vms.com (f$trnlnm -> f$getsyi) - in fcalloc, normalize pointer if size > 65520 bytes - don't use special fcalloc for 32 bit Borland C++ - use STDC instead of __GO32__ to avoid redeclaring exit, calloc, etc... - use Z_BINARY instead of BINARY - document that gzclose after gzdopen will close the file - allow "a" as mode in gzopen. - fix error checking in gzread - allow skipping .gz extra-field on pipes - added reference to Perl interface in README - put the crc table in FAR data (I dislike more and more the medium model :) - added get_crc_table - added a dimension to all arrays (Borland C can't count). - workaround Borland C bug in declaration of inflate_codes_new & inflate_fast - guard against multiple inclusion of *.h (for precompiled header on Mac) - Watcom C pretends to be Microsoft C small model even in 32 bit mode. - don't use unsized arrays to avoid silly warnings by Visual C++: warning C4746: 'inflate_mask' : unsized array treated as '__far' (what's wrong with far data in far model?). - define enum out of inflate_blocks_state to allow compilation with C++ Changes in 0.95 (16 Aug 95) - fix MSDOS small and medium model (now easier to adapt to any compiler) - inlined send_bits - fix the final (:-) bug for deflate with flush (output was correct but not completely flushed in rare occasions). - default window size is same for compression and decompression (it's now sufficient to set MAX_WBITS in zconf.h). - voidp -> voidpf and voidnp -> voidp (for consistency with other typedefs and because voidnp was not near in large model). Changes in 0.94 (13 Aug 95) - support MSDOS medium model - fix deflate with flush (could sometimes generate bad output) - fix deflateReset (zlib header was incorrectly suppressed) - added support for VMS - allow a compression level in gzopen() - gzflush now calls fflush - For deflate with flush, flush even if no more input is provided. - rename libgz.a as libz.a - avoid complex expression in infcodes.c triggering Turbo C bug - work around a problem with gcc on Alpha (in INSERT_STRING) - don't use inline functions (problem with some gcc versions) - allow renaming of Byte, uInt, etc... with #define. - avoid warning about (unused) pointer before start of array in deflate.c - avoid various warnings in gzio.c, example.c, infblock.c, adler32.c, zutil.c - avoid reserved word 'new' in trees.c Changes in 0.93 (25 June 95) - temporarily disable inline functions - make deflate deterministic - give enough lookahead for PARTIAL_FLUSH - Set binary mode for stdin/stdout in minigzip.c for OS/2 - don't even use signed char in inflate (not portable enough) - fix inflate memory leak for segmented architectures Changes in 0.92 (3 May 95) - don't assume that char is signed (problem on SGI) - Clear bit buffer when starting a stored block - no memcpy on Pyramid - suppressed inftest.c - optimized fill_window, put longest_match inline for gcc - optimized inflate on stored blocks. - untabify all sources to simplify patches Changes in 0.91 (2 May 95) - Default MEM_LEVEL is 8 (not 9 for Unix) as documented in zlib.h - Document the memory requirements in zconf.h - added "make install" - fix sync search logic in inflateSync - deflate(Z_FULL_FLUSH) now works even if output buffer too short - after inflateSync, don't scare people with just "lo world" - added support for DJGPP Changes in 0.9 (1 May 95) - don't assume that zalloc clears the allocated memory (the TurboC bug was Mark's bug after all :) - let again gzread copy uncompressed data unchanged (was working in 0.71) - deflate(Z_FULL_FLUSH), inflateReset and inflateSync are now fully implemented - added a test of inflateSync in example.c - moved MAX_WBITS to zconf.h because users might want to change that. - document explicitly that zalloc(64K) on MSDOS must return a normalized pointer (zero offset) - added Makefiles for Microsoft C, Turbo C, Borland C++ - faster crc32() Changes in 0.8 (29 April 95) - added fast inflate (inffast.c) - deflate(Z_FINISH) now returns Z_STREAM_END when done. Warning: this is incompatible with previous versions of zlib which returned Z_OK. - work around a TurboC compiler bug (bad code for b << 0, see infutil.h) (actually that was not a compiler bug, see 0.81 above) - gzread no longer reads one extra byte in certain cases - In gzio destroy(), don't reference a freed structure - avoid many warnings for MSDOS - avoid the ERROR symbol which is used by MS Windows Changes in 0.71 (14 April 95) - Fixed more MSDOS compilation problems :( There is still a bug with TurboC large model. Changes in 0.7 (14 April 95) - Added full inflate support. - Simplified the crc32() interface. The pre- and post-conditioning (one's complement) is now done inside crc32(). WARNING: this is incompatible with previous versions; see zlib.h for the new usage. Changes in 0.61 (12 April 95) - workaround for a bug in TurboC. example and minigzip now work on MSDOS. Changes in 0.6 (11 April 95) - added minigzip.c - added gzdopen to reopen a file descriptor as gzFile - added transparent reading of non-gziped files in gzread. - fixed bug in gzread (don't read crc as data) - fixed bug in destroy (gzio.c) (don't return Z_STREAM_END for gzclose). - don't allocate big arrays in the stack (for MSDOS) - fix some MSDOS compilation problems Changes in 0.5: - do real compression in deflate.c. Z_PARTIAL_FLUSH is supported but not yet Z_FULL_FLUSH. - support decompression but only in a single step (forced Z_FINISH) - added opaque object for zalloc and zfree. - added deflateReset and inflateReset - added a variable zlib_version for consistency checking. - renamed the 'filter' parameter of deflateInit2 as 'strategy'. Added Z_FILTERED and Z_HUFFMAN_ONLY constants. Changes in 0.4: - avoid "zip" everywhere, use zlib instead of ziplib. - suppress Z_BLOCK_FLUSH, interpret Z_PARTIAL_FLUSH as block flush if compression method == 8. - added adler32 and crc32 - renamed deflateOptions as deflateInit2, call one or the other but not both - added the method parameter for deflateInit2. - added inflateInit2 - simplied considerably deflateInit and inflateInit by not supporting user-provided history buffer. This is supported only in deflateInit2 and inflateInit2. Changes in 0.3: - prefix all macro names with Z_ - use Z_FINISH instead of deflateEnd to finish compression. - added Z_HUFFMAN_ONLY - added gzerror() if compression method == 8. - added adler32 and crc32 - renamed deflateOptions as deflateInit2, call one or the other but not both - added the method parameter for deflateInit2. - added inflateInit2 - simplied considerably deflateInit and inflateInit by not supporting user-provided history buffer.usr.lib/libz/Origzlib/README 644 2000 51 11103 6650472560 11122 zlib 1.0.4 is a general purpose data compression library. All the code is reentrant (thread safe). The data format used by the zlib library is described by RFCs (Request for Comments) 1950 to 1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format). These documents are also available in other formats from ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html All functions of the compression library are documented in the file zlib.h. A usage example of the library is given in the file example.c which also tests that the library is working correctly. Another example is given in the file minigzip.c. The compression library itself is composed of all source files except example.c and minigzip.c. To compile all files and run the test program, follow the instructions given at the top of Makefile. In short "make test; make install" should work for most machines. For MSDOS, use one of the special makefiles such as Makefile.msc; for VMS, use Make_vms.com or descrip.mms. Questions about zlib should be sent to or, if this fails, to the addresses given below in the Copyright section. The zlib home page is http://quest.jpl.nasa.gov/zlib/ The changes made in version 1.0.4 are documented in the file ChangeLog. The main changes since 1.0.3 are: - In very rare conditions, deflate(s, Z_FINISH) could fail to produce an EOF bit, so the decompressor could decompress all the correct data but went on to attempt decompressing extra garbage data. This affected minigzip too. - zlibVersion and gzerror return const char* (needed for DLL) - port to RISCOS (no fdopen, no multiple dots, no unlink, no fileno) A Perl interface to zlib written by Paul Marquess is in the CPAN (Comprehensive Perl Archive Network) sites, such as: ftp://ftp.cis.ufl.edu/pub/perl/CPAN/modules/by-module/Compress/Compress-Zlib* Notes for some targets: - For Turbo C the small model is supported only with reduced performance to avoid any far allocation; it was tested with -DMAX_WBITS=11 -DMAX_MEM_LEVEL=3 - For 64-bit Iris, deflate.c must be compiled without any optimization. With -O, one libpng test fails. The test works in 32 bit mode (with the -32 compiler flag). The compiler bug has been reported to SGI. - zlib doesn't work with gcc 2.6.3 on a DEC 3000/300LX under OSF/1 2.1 it works when compiled with cc. - zlib doesn't work on HP-UX 9.05 with one cc compiler (the one not accepting the -O option). It works with the other cc compiler. - To build a Windows DLL version, include in a DLL project zlib.def, zlib.rc and all .c files except example.c and minigzip.c; compile with -DZLIB_DLL For help on building a zlib DLL, contact Alessandro Iacopetti http://lisa.unial.it/iaco , or contact Brad Clarke . - gzdopen is not supported on RISCOS Acknowledgments: The deflate format used by zlib was defined by Phil Katz. The deflate and zlib specifications were written by Peter Deutsch. Thanks to all the people who reported problems and suggested various improvements in zlib; they are too numerous to cite here. Copyright notice: (C) 1995-1996 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler gzip@prep.ai.mit.edu madler@alumni.caltech.edu If you use the zlib library in a product, we would appreciate *not* receiving lengthy legal documents to sign. The sources are provided for free but without warranty of any kind. The library has been entirely written by Jean-loup Gailly and Mark Adler; it does not include third-party code. If you redistribute modified sources, we would appreciate that you include in the file ChangeLog history information documenting your changes. illy Mark Adler gzip@prep.ai.mit.edu madler@alumni.caltech.edu If you use the zlib library in a product, we would appreciate *not* receiving lengthy legal documents to sign. The sources are provided for free but without warranty of any kind. The library has been entirely written by Jean-loup Gailly and Mark Adler; it does not include third-party code. If you redistribute modified sources, we would appreciate that you include iusr.lib/libz/Origzlib/algorithm.doc 644 2000 51 12600 6650472561 12723 1. Compression algorithm (deflate) The deflation algorithm used by zlib (also zip and gzip) is a variation of LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in the input data. The second occurrence of a string is replaced by a pointer to the previous string, in the form of a pair (distance, length). Distances are limited to 32K bytes, and lengths are limited to 258 bytes. When a string does not occur anywhere in the previous 32K bytes, it is emitted as a sequence of literal bytes. (In this description, `string' must be taken as an arbitrary sequence of bytes, and is not restricted to printable characters.) Literals or match lengths are compressed with one Huffman tree, and match distances are compressed with another tree. The trees are stored in a compact form at the start of each block. The blocks can have any size (except that the compressed data for one block must fit in available memory). A block is terminated when deflate() determines that it would be useful to start another block with fresh trees. (This is somewhat similar to the behavior of LZW-based _compress_.) Duplicated strings are found using a hash table. All input strings of length 3 are inserted in the hash table. A hash index is computed for the next 3 bytes. If the hash chain for this index is not empty, all strings in the chain are compared with the current input string, and the longest match is selected. The hash chains are searched starting with the most recent strings, to favor small distances and thus take advantage of the Huffman encoding. The hash chains are singly linked. There are no deletions from the hash chains, the algorithm simply discards matches that are too old. To avoid a worst-case situation, very long hash chains are arbitrarily truncated at a certain length, determined by a runtime option (level parameter of deflateInit). So deflate() does not always find the longest possible match but generally finds a match which is long enough. deflate() also defers the selection of matches with a lazy evaluation mechanism. After a match of length N has been found, deflate() searches for a longer match at the next input byte. If a longer match is found, the previous match is truncated to a length of one (thus producing a single literal byte) and the longer match is emitted afterwards. Otherwise, the original match is kept, and the next match search is attempted only N steps later. The lazy match evaluation is also subject to a runtime parameter. If the current match is long enough, deflate() reduces the search for a longer match, thus speeding up the whole process. If compression ratio is more important than speed, deflate() attempts a complete second search even if the first match is already long enough. The lazy match evaluation is not performed for the fastest compression modes (level parameter 1 to 3). For these fast modes, new strings are inserted in the hash table only when no match was found, or when the match is not too long. This degrades the compression ratio but saves time since there are both fewer insertions and fewer searches. 2. Decompression algorithm (inflate) The real question is, given a Huffman tree, how to decode fast. The most important realization is that shorter codes are much more common than longer codes, so pay attention to decoding the short codes fast, and let the long codes take longer to decode. inflate() sets up a first level table that covers some number of bits of input less than the length of longest code. It gets that many bits from the stream, and looks it up in the table. The table will tell if the next code is that many bits or less and how many, and if it is, it will tell the value, else it will point to the next level table for which inflate() grabs more bits and tries to decode a longer code. How many bits to make the first lookup is a tradeoff between the time it takes to decode and the time it takes to build the table. If building the table took no time (and if you had infinite memory), then there would only be a first level table to cover all the way to the longest code. However, building the table ends up taking a lot longer for more bits since short codes are replicated many times in such a table. What inflate() does is simply to make the number of bits in the first table a variable, and set it for the maximum speed. inflate() sends new trees relatively often, so it is possibly set for a smaller first level table than an application that has only one tree for all the data. For inflate, which has 286 possible codes for the literal/length tree, the size of the first table is nine bits. Also the distance trees have 30 possible values, and the size of the first table is six bits. Note that for each of those cases, the table ended up one bit longer than the ``average'' code length, i.e. the code length of an approximately flat code which would be a little more than eight bits for 286 symbols and a little less than five bits for 30 symbols. It would be interesting to see if optimizing the first level table for other applications gave values within a bit or two of the flat code size. Jean-loup Gailly Mark Adler gzip@prep.ai.mit.edu madler@alumni.caltech.edu References: [LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343. ``DEFLATE Compressed Data Format Specification'' available in ftp://ds.internic.net/rfc/rfc1951.txt ymbols. It would be interesting to see if optimizing the first level table for other applications gave values within a bit or tusr.lib/libz/compressio.c 444 2000 51 23700 6651226242 11007 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)compressio.c 5.1 (Berkeley) 1/19/99 */ /* This module handles I/O from/to compress -s files */ #include #include "zutil.h" struct internal_state {int dummy;}; /* for buggy compilers */ #define Z_BUFSIZE 4096 #define ALLOC(size) malloc(size) #define TRYFREE(p) {if (p) free(p);} typedef struct comp_stream { z_stream stream; int z_err; /* error code for last stream operation */ int z_eof; /* set if end of input file */ FILE *file; /* .Z file */ Byte *inbuf; /* input buffer */ Byte *outbuf; /* output buffer */ uLong crc; /* crc32 of uncompressed data */ char *msg; /* error message */ char mode; /* 'w' or 'r' */ } comp_stream; local compFile comp_open OF((FILE *file, char mode, int level)); local int get_byte OF((comp_stream *s)); local int destroy OF((comp_stream *s)); local void putLong OF((FILE *file, uLong x)); local uLong getLong OF((comp_stream *s)); local compFile comp_open (file, mode, level) FILE *file; char mode; int level; { int err; comp_stream *s; if (!file) return Z_NULL; s = (comp_stream *)ALLOC(sizeof(comp_stream)); if (!s) return Z_NULL; s->stream.zalloc = (alloc_func)0; s->stream.zfree = (free_func)0; s->stream.opaque = (voidpf)0; s->stream.next_in = s->inbuf = Z_NULL; s->stream.next_out = s->outbuf = Z_NULL; s->stream.avail_in = s->stream.avail_out = 0; s->file = file; s->mode = mode; s->z_err = Z_OK; s->z_eof = 0; s->crc = crc32(0L, Z_NULL, 0); s->msg = NULL; if (s->mode == 'w') { err = deflateInit2(&(s->stream), level, Z_DEFLATED, -MAX_WBITS, DEF_MEM_LEVEL, 0); /* windowBits is passed < 0 to suppress zlib header */ s->stream.next_out = s->outbuf = (Byte*)ALLOC(Z_BUFSIZE); if (err != Z_OK || s->outbuf == Z_NULL) { return destroy(s), (compFile)Z_NULL; } } else { err = inflateInit2(&(s->stream), -MAX_WBITS); s->stream.next_in = s->inbuf = (Byte*)ALLOC(Z_BUFSIZE); if (err != Z_OK || s->inbuf == Z_NULL) { return destroy(s), (compFile)Z_NULL; } } s->stream.avail_out = Z_BUFSIZE; return (compFile)s; } compFile compress_open(file, level) FILE *file; int level; { return comp_open(file, 'w', level); } compFile uncompress_open(file) FILE *file; { return comp_open(file, 'r'); } /* =========================================================================== Read a byte from a comp_stream; update next_in and avail_in. Return EOF for end of file. IN assertion: the stream s has been sucessfully opened for reading. */ local int get_byte(s) comp_stream *s; { if (s->z_eof) return EOF; if (s->stream.avail_in == 0) { errno = 0; s->stream.avail_in = fread(s->inbuf, 1, Z_BUFSIZE, s->file); if (s->stream.avail_in == 0) { s->z_eof = 1; if (ferror(s->file)) s->z_err = Z_ERRNO; return EOF; } s->stream.next_in = s->inbuf; } s->stream.avail_in--; return *(s->stream.next_in)++; } /* =========================================================================== * Cleanup then free the given comp_stream. Return a zlib error code. Try freeing in the reverse order of allocations. */ local int destroy (s) comp_stream *s; { int err = Z_OK; if (!s) return Z_STREAM_ERROR; TRYFREE(s->msg); if (s->stream.state != NULL) { if (s->mode == 'w') { err = deflateEnd(&(s->stream)); } else if (s->mode == 'r') { err = inflateEnd(&(s->stream)); } } if (s->z_err < 0) err = s->z_err; TRYFREE(s->inbuf); TRYFREE(s->outbuf); TRYFREE(s); return err; } /* =========================================================================== Reads the given number of uncompressed bytes from the compressed file. compread returns the number of bytes actually read (0 for end of file). */ int compread (file, buf, len) compFile file; voidp buf; unsigned len; { comp_stream *s = (comp_stream*)file; Bytef *start = buf; /* starting point for crc computation */ Byte *next_out; /* == stream.next_out but not forced far (for MSDOS) */ if (s == NULL || s->mode != 'r') return Z_STREAM_ERROR; if (s->z_err == Z_DATA_ERROR || s->z_err == Z_ERRNO) return -1; if (s->z_err == Z_STREAM_END) return 0; /* EOF */ s->stream.next_out = next_out = buf; s->stream.avail_out = len; while (s->stream.avail_out != 0) { if (s->stream.avail_in == 0 && !s->z_eof) { errno = 0; s->stream.avail_in = fread(s->inbuf, 1, Z_BUFSIZE, s->file); if (s->stream.avail_in == 0) { s->z_eof = 1; if (ferror(s->file)) { s->z_err = Z_ERRNO; break; } } s->stream.next_in = s->inbuf; } s->z_err = inflate(&(s->stream), Z_NO_FLUSH); if (s->z_err == Z_STREAM_END) { /* Check CRC and original size */ s->crc = crc32(s->crc, start, (uInt)(s->stream.next_out - start)); start = s->stream.next_out; if (getLong(s) != s->crc || getLong(s) != s->stream.total_out) { s->z_err = Z_DATA_ERROR; } } if (s->z_err != Z_OK || s->z_eof) break; } s->crc = crc32(s->crc, start, (uInt)(s->stream.next_out - start)); return (int)(len - s->stream.avail_out); } /* =========================================================================== Writes the given number of uncompressed bytes into the compressed file. compwrite returns the number of bytes actually written (0 in case of error). */ int compwrite (file, buf, len) compFile file; const voidp buf; unsigned len; { comp_stream *s = (comp_stream*)file; if (s == NULL || s->mode != 'w') return Z_STREAM_ERROR; s->stream.next_in = buf; s->stream.avail_in = len; while (s->stream.avail_in != 0) { if (s->stream.avail_out == 0) { s->stream.next_out = s->outbuf; if (fwrite(s->outbuf, 1, Z_BUFSIZE, s->file) != Z_BUFSIZE) { s->z_err = Z_ERRNO; break; } s->stream.avail_out = Z_BUFSIZE; } s->z_err = deflate(&(s->stream), Z_NO_FLUSH); if (s->z_err != Z_OK) break; } s->crc = crc32(s->crc, buf, len); return (int)(len - s->stream.avail_in); } /* =========================================================================== Flushes all pending output into the compressed file. The parameter flush is as in the deflate() function. compflush should be called only when strictly necessary because it can degrade compression. */ int compflush (file, flush) compFile file; int flush; { uInt len; int done = 0; comp_stream *s = (comp_stream*)file; if (s == NULL || s->mode != 'w') return Z_STREAM_ERROR; s->stream.avail_in = 0; /* should be zero already anyway */ for (;;) { len = Z_BUFSIZE - s->stream.avail_out; if (len != 0) { if ((uInt)fwrite(s->outbuf, 1, len, s->file) != len) { s->z_err = Z_ERRNO; return Z_ERRNO; } s->stream.next_out = s->outbuf; s->stream.avail_out = Z_BUFSIZE; } if (done) break; s->z_err = deflate(&(s->stream), flush); /* deflate has finished flushing only when it hasn't used up * all the available space in the output buffer: */ done = (s->stream.avail_out != 0 || s->z_err == Z_STREAM_END); if (s->z_err != Z_OK && s->z_err != Z_STREAM_END) break; } fflush(s->file); return s->z_err == Z_STREAM_END ? Z_OK : s->z_err; } /* =========================================================================== Outputs a long in LSB order to the given file */ local void putLong (file, x) FILE *file; uLong x; { int n; for (n = 0; n < 4; n++) { fputc((int)(x & 0xff), file); x >>= 8; } } /* =========================================================================== Reads a long in LSB order from the given comp_stream. Sets */ local uLong getLong (s) comp_stream *s; { uLong x = (uLong)get_byte(s); int c; x += ((uLong)get_byte(s))<<8; x += ((uLong)get_byte(s))<<16; c = get_byte(s); if (c == EOF) s->z_err = Z_DATA_ERROR; x += ((uLong)c)<<24; return x; } /* =========================================================================== Flushes all pending output if necessary and deallocates all the (de)compression state. */ int compclose (file) compFile file; { int err; comp_stream *s = (comp_stream*)file; if (s == NULL) return Z_STREAM_ERROR; if (s->mode == 'w') { err = compflush (file, Z_FINISH); if (err != Z_OK) return destroy(file); putLong (s->file, s->crc); putLong (s->file, s->stream.total_in); } return destroy(file); } /* =========================================================================== Returns the error message for the last error which occured on the given compressed file. errnum is set to zlib error number. If an error occured in the file system and not in the compression library, errnum is set to Z_ERRNO and the application may consult errno to get the exact error code. */ const char* comperror (file, errnum) compFile file; int *errnum; { char *m; comp_stream *s = (comp_stream*)file; if (s == NULL) { *errnum = Z_STREAM_ERROR; return (const char*)ERR_MSG(Z_STREAM_ERROR); } *errnum = s->z_err; if (*errnum == Z_OK) return (const char*)""; m = (char*)(*errnum == Z_ERRNO ? zstrerror(errno) : s->stream.msg); if (m == NULL || *m == '\0') m = (char*)ERR_MSG(s->z_err); TRYFREE(s->msg); s->msg = (char*)ALLOC(strlen(m) + 1); strcpy(s->msg, m); return (const char*)s->msg; } *errnum; { char *m; comp_stream *s = (comp_stream*)file;usr.lib/libz/Makefile 444 2000 51 3214 6774467064 10115 # Makefile for libz # # @(#)Makefile 5.2 (Berkeley) 1/19/99 CFLAGS= -O LIBC= /lib/libc.a SRCS= adler32.c compress.c crc32.c gzio.c uncompr.c deflate.c trees.c \ zutil.c inflate.c infblock.c inftrees.c infcodes.c infutil.c \ inffast.c compressio.c OBJS= adler32.o compress.o crc32.o gzio.o uncompr.o deflate.o trees.o \ zutil.o inflate.o infblock.o inftrees.o infcodes.o infutil.o \ inffast.o compressio.o all: libz libz_p .c.o: @${CC} -c -pg ${CFLAGS} $*.c @ld -x -o profiled/$*.o -r $*.o ${CC} ${CFLAGS} -c $*.c @ld -x -r $*.o @mv a.out $*.o # trees.c and infblock.c are compiled without -O, otherwise the generated code # dumps core when executed. Sorry, can't troubleshoot this problem, gotta learn # some VAX assembly first... trees.o: trees.c @${CC} -c -pg trees.c @ld -x -o profiled/trees.o -r trees.o ${CC} -c trees.c @ld -x -r trees.o @mv a.out trees.o infblock.o: infblock.c @${CC} -c -pg infblock.c @ld -x -o profiled/infblock.o -r infblock.o ${CC} -c infblock.c @ld -x -r infblock.o @mv a.out infblock.o libz libz_p: ${OBJS} @echo building profiled libz @cd profiled; ar cu ../libz_p ${OBJS} ranlib libz_p @echo building normal libz @ar cu libz ${OBJS} ranlib libz clean: FRC rm -f ${OBJS} profiled/*.o libz libz_p depend: FRC mkdep ${CFLAGS} ${SRCS} install: FRC install -o bin -g bin -m 644 libz ${DESTDIR}/usr/lib/libz.a ranlib ${DESTDIR}/usr/lib/libz.a install -o bin -g bin -m 644 libz_p ${DESTDIR}/usr/lib/libz_p.a ranlib ${DESTDIR}/usr/lib/libz_p.a lint: FRC lint ${CFLAGS} ${SRCS} tags: FRC ctags ${SRCS} FRC: # DO NOT DELETE THIS LINE -- mkdep uses it. # DO NOT PUT ANYTHING AFTER THIS LINE, IT WILL GO AWAY. rmal libz @ar cu libz ${OBJS} ranlib libz clean: FRC rm -f ${OBJS} profiled/*.o libz libz_p depend: FRC mkdep ${CFLAGS} ${SRCS} install: FRC install -o bin -g bin -m 644 libz ${DESTDIR}/usr/lib/libz.a ranlib ${DESTDIR}/usr/lib/libz.a install -o bin -g bin -m 644 libz_p ${DESTDIR}/usr/lib/libz_p.a ranlib ${DESTDIR}/usr/lib/libz_p.a lint: FRC lint ${CFLAGS} $usr.lib/libz/adler32.c 444 2000 51 2400 6650544245 10037 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)adler32.c 5.1 (Berkeley) 1/18/99 */ /* $Id: adler32.c,v 1.1.1.1 1997/03/19 15:06:36 kivinen Exp $ */ #include #define BASE 65521L /* largest prime smaller than 65536 */ #define NMAX 5552 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ #define DO1(buf,i) {s1 += buf[i]; s2 += s1;} #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); #define DO16(buf) DO8(buf,0); DO8(buf,8); /* ========================================================================= */ uLong adler32(adler, buf, len) uLong adler; const Bytef *buf; uInt len; { unsigned long s1 = adler & 0xffff; unsigned long s2 = (adler >> 16) & 0xffff; int k; if (buf == Z_NULL) return 1L; while (len > 0) { k = len < NMAX ? len : NMAX; len -= k; while (k >= 16) { DO16(buf); buf += 16; k -= 16; } if (k != 0) do { s1 += *buf++; s2 += s1; } while (--k); s1 %= BASE; s2 %= BASE; } return (s2 << 16) | s1; } r; const Bytef *buf; uInt len; { unsigned long s1 = adler & 0xffff; unsigned long s2 = (adler >> 16) & 0xffff; int k; if (buf == Z_NULL) return 1L; while (len > 0) { k = len < NMAX ? len : NMAX; len -= k; usr.lib/libz/crc32.c 444 2000 51 15511 6650544245 7546 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)crc32.c 5.1 (Berkeley) 1/18/99 */ /* $Id: crc32.c,v 1.1.1.1 1997/03/19 15:06:37 kivinen Exp $ */ #include "zlib.h" #define local static #ifdef DYNAMIC_CRC_TABLE local int crc_table_empty = 1; local uLongf crc_table[256]; local void make_crc_table OF((void)); /* Generate a table for a byte-wise 32-bit CRC calculation on the polynomial: x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. Polynomials over GF(2) are represented in binary, one bit per coefficient, with the lowest powers in the most significant bit. Then adding polynomials is just exclusive-or, and multiplying a polynomial by x is a right shift by one. If we call the above polynomial p, and represent a byte as the polynomial q, also with the lowest power in the most significant bit (so the byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, where a mod b means the remainder after dividing a by b. This calculation is done using the shift-register method of multiplying and taking the remainder. The register is initialized to zero, and for each incoming bit, x^32 is added mod p to the register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x (which is shifting right by one and adding x^32 mod p if the bit shifted out is a one). We start with the highest power (least significant bit) of q and repeat for all eight bits of q. The table is simply the CRC of all possible eight bit values. This is all the information needed to generate CRC's on data a byte at a time for all combinations of CRC register values and incoming bytes. */ local void make_crc_table() { uLong c; int n, k; uLong poly; /* polynomial exclusive-or pattern */ /* terms of polynomial defining this crc (except x^32): */ static Byte p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* make exclusive-or pattern from polynomial (0xedb88320L) */ poly = 0L; for (n = 0; n < sizeof(p)/sizeof(Byte); n++) poly |= 1L << (31 - p[n]); for (n = 0; n < 256; n++) { c = (uLong)n; for (k = 0; k < 8; k++) c = c & 1 ? poly ^ (c >> 1) : c >> 1; crc_table[n] = c; } crc_table_empty = 0; } #else /* ======================================================================== * Table of CRC-32's of all single-byte values (made by make_crc_table) */ local uLongf crc_table[256] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; #endif /* ========================================================================= * This function can be used by asm versions of crc32() */ uLongf *get_crc_table() { #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif return (uLongf *)crc_table; } /* ========================================================================= */ #define DO1(buf) crc = crc_table[((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8); #define DO2(buf) DO1(buf); DO1(buf); #define DO4(buf) DO2(buf); DO2(buf); #define DO8(buf) DO4(buf); DO4(buf); /* ========================================================================= */ uLong crc32(crc, buf, len) uLong crc; const Bytef *buf; uInt len; { if (buf == Z_NULL) return 0L; #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif crc = crc ^ 0xffffffffL; while (len >= 8) { DO8(buf); len -= 8; } if (len) do { DO1(buf); } while (--len); return crc ^ 0xffffffffL; } (buf); DO2(buf); #define DO8(buf) DO4(buf); DO4(buf); /* ========================================================================= */ uLong crc32(crc, buf, len) uLong crc; cusr.lib/libz/compress.c 444 2000 51 3501 6650544246 10442 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)compress.c 5.1 (Berkeley) 1/18/99 */ /* $Id: compress.c,v 1.1.1.1 1997/03/19 15:06:36 kivinen Exp $ */ #include /* =========================================================================== Compresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least 0.1% larger than sourceLen plus 8 bytes. Upon exit, destLen is the actual size of the compressed buffer. This function can be used to compress a whole file at once if the input file is mmap'ed. compress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer. */ int compress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { z_stream stream; int err; stream.next_in = (Bytef*)source; stream.avail_in = (uInt)sourceLen; #ifdef MAXSEG_64K /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; #endif stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; stream.opaque = (voidpf)0; err = deflateInit(&stream, Z_DEFAULT_COMPRESSION); if (err != Z_OK) return err; err = deflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { deflateEnd(&stream); return err == Z_OK ? Z_BUF_ERROR : err; } *destLen = stream.total_out; err = deflateEnd(&stream); return err; } out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; stream.opaque = (voidpf)0; usr.lib/libz/deflate.c 444 2000 51 125245 6650544246 10265 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)deflate.c 5.1 (Berkeley) 1/18/99 */ /* * ALGORITHM * * The "deflation" process depends on being able to identify portions * of the input text which are identical to earlier input (within a * sliding window trailing behind the input currently being processed). * * The most straightforward technique turns out to be the fastest for * most input files: try all possible matches and select the longest. * The key feature of this algorithm is that insertions into the string * dictionary are very simple and thus fast, and deletions are avoided * completely. Insertions are performed at each input character, whereas * string matches are performed only when the previous match ends. So it * is preferable to spend more time in matches to allow very fast string * insertions and avoid deletions. The matching algorithm for small * strings is inspired from that of Rabin & Karp. A brute force approach * is used to find longer strings when a small match has been found. * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze * (by Leonid Broukhis). * A previous version of this file used a more sophisticated algorithm * (by Fiala and Greene) which is guaranteed to run in linear amortized * time, but has a larger average cost, uses more memory and is patented. * However the F&G algorithm may be faster for some highly redundant * files if the parameter max_chain_length (described below) is too large. * * ACKNOWLEDGEMENTS * * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and * I found it in 'freeze' written by Leonid Broukhis. * Thanks to many people for bug reports and testing. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * A description of the Rabin and Karp algorithm is given in the book * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * * Fiala,E.R., and Greene,D.H. * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * */ /* $Id: deflate.c,v 1.1.1.1 1997/03/19 15:06:37 kivinen Exp $ */ #include "deflate.h" char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* =========================================================================== * Function prototypes. */ typedef enum { need_more, /* block not completed, need more input or more output */ block_done, /* block flush performed */ finish_started, /* finish started, need only more output at next deflate */ finish_done /* finish done, accept no more input or output */ } block_state; typedef block_state (*compress_func) OF((deflate_state *s, int flush)); /* Compression function. Returns the block state after the call. */ local void fill_window OF((deflate_state *s)); local block_state deflate_stored OF((deflate_state *s, int flush)); local block_state deflate_fast OF((deflate_state *s, int flush)); local block_state deflate_slow OF((deflate_state *s, int flush)); local void lm_init OF((deflate_state *s)); local uInt longest_match OF((deflate_state *s, IPos cur_match)); local void putShortMSB OF((deflate_state *s, uInt b)); local void flush_pending OF((z_streamp strm)); local int read_buf OF((z_streamp strm, charf *buf, unsigned size)); #ifdef ASMV void match_init OF((void)); /* asm code initialization */ #endif #ifdef DEBUG local void check_match OF((deflate_state *s, IPos start, IPos match, int length)); #endif /* =========================================================================== * Local data */ #define NIL 0 /* Tail of hash chains */ #ifndef TOO_FAR # define TOO_FAR 4096 #endif /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ typedef struct config_s { ush good_length; /* reduce lazy search above this match length */ ush max_lazy; /* do not perform lazy search above this match length */ ush nice_length; /* quit search above this match length */ ush max_chain; compress_func func; } config; local config configuration_table[10] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */ /* 2 */ {4, 5, 16, 8, deflate_fast}, /* 3 */ {4, 6, 32, 32, deflate_fast}, /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ /* 5 */ {8, 16, 32, 32, deflate_slow}, /* 6 */ {8, 16, 128, 128, deflate_slow}, /* 7 */ {8, 32, 128, 256, deflate_slow}, /* 8 */ {32, 128, 258, 1024, deflate_slow}, /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */ /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. */ #define EQUAL 0 /* result of memcmp for equal strings */ struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ /* =========================================================================== * Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(s,h,c) (h = (((h)<hash_shift) ^ (c)) & s->hash_mask) /* =========================================================================== * Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of str are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) /* =========================================================================== * Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ #define CLEAR_HASH(s) \ s->head[s->hash_size-1] = NIL; \ zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); /* ========================================================================= */ int deflateInit(strm, level) z_streamp strm; int level; { return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY); /* To do: ignore strm->next_in if we use it as window */ } /* ========================================================================= */ int deflateInit2(strm, level, method, windowBits, memLevel, strategy) z_streamp strm; int level; int method; int windowBits; int memLevel; int strategy; { deflate_state *s; int noheader = 0; ushf *overlay; /* We overlay pending_buf and d_buf+l_buf. This works since the average * output size for (length,distance) codes is <= 24 bits. */ if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; if (strm->zalloc == Z_NULL) { strm->zalloc = zcalloc; strm->opaque = (voidpf)0; } if (strm->zfree == Z_NULL) strm->zfree = zcfree; if (level == Z_DEFAULT_COMPRESSION) level = 6; if (windowBits < 0) { /* undocumented feature: suppress zlib header */ noheader = 1; windowBits = -windowBits; } if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) { return Z_STREAM_ERROR; } s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); if (s == Z_NULL) return Z_MEM_ERROR; strm->state = (struct internal_state FAR *)s; s->strm = strm; s->noheader = noheader; s->w_bits = windowBits; s->w_size = 1 << s->w_bits; s->w_mask = s->w_size - 1; s->hash_bits = memLevel + 7; s->hash_size = 1 << s->hash_bits; s->hash_mask = s->hash_size - 1; s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); s->pending_buf = (uchf *) overlay; if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || s->pending_buf == Z_NULL) { strm->msg = (char*)ERR_MSG(Z_MEM_ERROR); deflateEnd (strm); return Z_MEM_ERROR; } s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s->level = level; s->strategy = strategy; s->method = (Byte)method; return deflateReset(strm); } /* ========================================================================= */ int deflateSetDictionary (strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { deflate_state *s; uInt length = dictLength; uInt n; IPos hash_head = 0; if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL || strm->state->status != INIT_STATE) return Z_STREAM_ERROR; s = strm->state; strm->adler = adler32(strm->adler, dictionary, dictLength); if (length < MIN_MATCH) return Z_OK; if (length > MAX_DIST(s)) { length = MAX_DIST(s); dictionary += dictLength - length; } zmemcpy((charf *)s->window, dictionary, length); s->strstart = length; s->block_start = (long)length; /* Insert all strings in the hash table (except for the last two bytes). * s->lookahead stays null, so s->ins_h will be recomputed at the next * call of fill_window. */ s->ins_h = s->window[0]; UPDATE_HASH(s, s->ins_h, s->window[1]); for (n = 0; n <= length - MIN_MATCH; n++) { INSERT_STRING(s, n, hash_head); } if (hash_head) hash_head = 0; /* to make compiler happy */ return Z_OK; } /* ========================================================================= */ int deflateReset (strm) z_streamp strm; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR; strm->total_in = strm->total_out = 0; strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ strm->data_type = Z_UNKNOWN; s = (deflate_state *)strm->state; s->pending = 0; s->pending_out = s->pending_buf; if (s->noheader < 0) { s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ } s->status = s->noheader ? BUSY_STATE : INIT_STATE; strm->adler = 1; s->last_flush = Z_NO_FLUSH; _tr_init(s); lm_init(s); return Z_OK; } /* ========================================================================= */ int deflateParams(strm, level, strategy) z_streamp strm; int level; int strategy; { deflate_state *s; compress_func func; int err = Z_OK; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; if (level == Z_DEFAULT_COMPRESSION) { level = 6; } if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) { return Z_STREAM_ERROR; } func = configuration_table[s->level].func; if (func != configuration_table[level].func && strm->total_in != 0) { /* Flush the last buffer: */ err = deflate(strm, Z_PARTIAL_FLUSH); } if (s->level != level) { s->level = level; s->max_lazy_match = configuration_table[level].max_lazy; s->good_match = configuration_table[level].good_length; s->nice_match = configuration_table[level].nice_length; s->max_chain_length = configuration_table[level].max_chain; } s->strategy = strategy; return err; } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ local void putShortMSB (s, b) deflate_state *s; uInt b; { put_byte(s, (Byte)(b >> 8)); put_byte(s, (Byte)(b & 0xff)); } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->next_out buffer and copying into it. * (See also read_buf()). */ local void flush_pending(strm) z_streamp strm; { unsigned len = strm->state->pending; if (len > strm->avail_out) len = strm->avail_out; if (len == 0) return; zmemcpy(strm->next_out, strm->state->pending_out, len); strm->next_out += len; strm->state->pending_out += len; strm->total_out += len; strm->avail_out -= len; strm->state->pending -= len; if (strm->state->pending == 0) { strm->state->pending_out = strm->state->pending_buf; } } /* ========================================================================= */ int deflate (strm, flush) z_streamp strm; int flush; { int old_flush; /* value of flush param for previous deflate call */ deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || flush > Z_FINISH || flush < 0) { return Z_STREAM_ERROR; } s = strm->state; if (strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0) || (s->status == FINISH_STATE && flush != Z_FINISH)) { ERR_RETURN(strm, Z_STREAM_ERROR); } if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); s->strm = strm; /* just in case */ old_flush = s->last_flush; s->last_flush = flush; /* Write the zlib header */ if (s->status == INIT_STATE) { uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; uInt level_flags = (s->level-1) >> 1; if (level_flags > 3) level_flags = 3; header |= (level_flags << 6); if (s->strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31); s->status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s->strstart != 0) { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } strm->adler = 1L; } /* Flush as much pending output as possible */ if (s->pending != 0) { flush_pending(strm); if (strm->avail_out == 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s->last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUFF_ERROR. */ } else if (strm->avail_in == 0 && flush <= old_flush && flush != Z_FINISH) { ERR_RETURN(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s->status == FINISH_STATE && strm->avail_in != 0) { ERR_RETURN(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { block_state bstate; bstate = (*(configuration_table[s->level].func))(s, flush); if (bstate == finish_started || bstate == finish_done) { s->status = FINISH_STATE; } if (bstate == need_more || bstate == finish_started) { if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate == block_done) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(s); } else { /* FULL_FLUSH or SYNC_FLUSH */ _tr_stored_block(s, (char*)0, 0L, 0); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush == Z_FULL_FLUSH) { CLEAR_HASH(s); /* forget history */ } } flush_pending(strm); if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } Assert(strm->avail_out > 0, "bug2"); if (flush != Z_FINISH) return Z_OK; if (s->noheader) return Z_STREAM_END; /* Write the zlib trailer (adler32) */ putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ s->noheader = -1; /* write the trailer only once! */ return s->pending != 0 ? Z_OK : Z_STREAM_END; } /* ========================================================================= */ int deflateEnd (strm) z_streamp strm; { int status; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; /* Deallocate in reverse order of allocations: */ TRY_FREE(strm, strm->state->pending_buf); TRY_FREE(strm, strm->state->head); TRY_FREE(strm, strm->state->prev); TRY_FREE(strm, strm->state->window); status = strm->state->status; ZFREE(strm, strm->state); strm->state = Z_NULL; return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; } /* ========================================================================= */ int deflateCopy (dest, source) z_streamp dest; z_streamp source; { if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { return Z_STREAM_ERROR; } *dest = *source; return Z_STREAM_ERROR; /* to be implemented */ #if 0 dest->state = (struct internal_state FAR *) (*dest->zalloc)(1, sizeof(deflate_state)); if (dest->state == Z_NULL) return Z_MEM_ERROR; *(dest->state) = *(source->state); return Z_OK; #endif } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */ local int read_buf(strm, buf, size) z_streamp strm; charf *buf; unsigned size; { unsigned len = strm->avail_in; if (len > size) len = size; if (len == 0) return 0; strm->avail_in -= len; if (!strm->state->noheader) { strm->adler = adler32(strm->adler, strm->next_in, len); } zmemcpy(buf, strm->next_in, len); strm->next_in += len; strm->total_in += len; return (int)len; } /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ local void lm_init (s) deflate_state *s; { s->window_size = (ulg)2L*s->w_size; CLEAR_HASH(s); /* Set the default configuration parameters: */ s->max_lazy_match = configuration_table[s->level].max_lazy; s->good_match = configuration_table[s->level].good_length; s->nice_match = configuration_table[s->level].nice_length; s->max_chain_length = configuration_table[s->level].max_chain; s->strstart = 0; s->block_start = 0L; s->lookahead = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; s->ins_h = 0; #ifdef ASMV match_init(); /* initialize the asm code */ #endif } /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ #ifndef ASMV /* For 80x86 and 680x0, an optimized version will be provided in match.asm or * match.S. The code will be functionally equivalent. */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { unsigned chain_length = s->max_chain_length;/* max hash chain length */ register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ int best_len = s->prev_length; /* best match length so far */ int nice_match = s->nice_match; /* stop if match long enough */ IPos limit = s->strstart > (IPos)MAX_DIST(s) ? s->strstart - (IPos)MAX_DIST(s) : NIL; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ Posf *prev = s->prev; uInt wmask = s->w_mask; #ifdef UNALIGNED_OK /* Compare two bytes at a time. Note: this is not always beneficial. * Try with and without -DUNALIGNED_OK to check. */ register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; register ush scan_start = *(ushf*)scan; register ush scan_end = *(ushf*)(scan+best_len-1); #else register Bytef *strend = s->window + s->strstart + MAX_MATCH; register Byte scan_end1 = scan[best_len-1]; register Byte scan_end = scan[best_len]; #endif /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s->prev_length >= s->good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2: */ #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) /* This code assumes sizeof(unsigned short) == 2. Do not use * UNALIGNED_OK if your compiler uses a different size. */ if (*(ushf*)(match+best_len-1) != scan_end || *(ushf*)match != scan_start) continue; /* It is not necessary to compare scan[2] and match[2] since they are * always equal when the other bytes match, given that the hash keys * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at * strstart+3, +5, ... up to strstart+257. We check for insufficient * lookahead only every 4th comparison; the 128th check will be made * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is * necessary to put more guard bytes at the end of the window, or * to check more often for insufficient lookahead. */ Assert(scan[2] == match[2], "scan[2]?"); scan++, match++; do { } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && scan < strend); /* The funny "do {}" generates better code on most compilers */ /* Here, scan <= window+strstart+257 */ Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); if (*scan == *match) scan++; len = (MAX_MATCH - 1) - (int)(strend-scan); scan = strend - (MAX_MATCH-1); #else /* UNALIGNED_OK */ if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH; #endif /* UNALIGNED_OK */ if (len > best_len) { s->match_start = cur_match; best_len = len; if (len >= nice_match) break; #ifdef UNALIGNED_OK scan_end = *(ushf*)(scan+best_len-1); #else scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; #endif } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0); if ((uInt)best_len <= s->lookahead) return best_len; return s->lookahead; } #endif /* ASMV */ #ifdef DEBUG /* =========================================================================== * Check that the match at match_start is indeed a match. */ local void check_match(s, start, match, length) deflate_state *s; IPos start, match; int length; { /* check that the match is indeed a match */ if (zmemcmp((charf *)s->window + match, (charf *)s->window + start, length) != EQUAL) { fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); do { fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); } while (--length != 0); z_error("invalid match"); } if (verbose > 1) { fprintf(stderr,"\\[%d,%d]", start-match, length); do { putc(s->window[start++], stderr); } while (--length != 0); } } #else # define check_match(s, start, match, length) #endif /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ local void fill_window(s) deflate_state *s; { register unsigned n, m; register Posf *p; unsigned more; /* Amount of free space at the end of the window. */ uInt wsize = s->w_size; do { more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); /* Deal with !@#$% 64K limit: */ if (more == 0 && s->strstart == 0 && s->lookahead == 0) { more = wsize; } else if (more == (unsigned)(-1)) { /* Very unlikely, but possible on 16 bit machine if strstart == 0 * and lookahead == 1 (input done one byte at time) */ more--; /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ } else if (s->strstart >= wsize+MAX_DIST(s)) { zmemcpy((charf *)s->window, (charf *)s->window+wsize, (unsigned)wsize); s->match_start -= wsize; s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ s->block_start -= (long) wsize; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage): */ n = s->hash_size; p = &s->head[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); } while (--n); n = wsize; p = &s->prev[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); more += wsize; } if (s->strm->avail_in == 0) return; /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(more >= 2, "more < 2"); n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead, more); s->lookahead += n; /* Initialize the hash value now that we have some input: */ if (s->lookahead >= MIN_MATCH) { s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); } /* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK_ONLY(s, eof) { \ _tr_flush_block(s, (s->block_start >= 0L ? \ (charf *)&s->window[(unsigned)s->block_start] : \ (charf *)Z_NULL), \ (ulg)((long)s->strstart - s->block_start), \ (eof)); \ s->block_start = s->strstart; \ flush_pending(s->strm); \ Tracev((stderr,"[FLUSH]")); \ } /* Same but force premature exit if necessary. */ #define FLUSH_BLOCK(s, eof) { \ FLUSH_BLOCK_ONLY(s, eof); \ if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying. */ local block_state deflate_stored(s, flush) deflate_state *s; int flush; { for (;;) { /* Fill the window as much as possible: */ if (s->lookahead <= 1) { Assert(s->strstart < s->w_size+MAX_DIST(s) || s->block_start >= (long)s->w_size, "slide too late"); fill_window(s); if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; if (s->lookahead == 0) break; /* flush the current block */ } Assert(s->block_start >= 0L, "block gone"); s->strstart += s->lookahead; s->lookahead = 0; /* Stored blocks are limited to 0xffff bytes: */ if (s->strstart == 0 || s->strstart > 0xfffe) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s->lookahead = s->strstart - 0xffff; s->strstart = 0xffff; } /* Emit a stored block if it is large enough: */ if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { FLUSH_BLOCK(s, 0); } } FLUSH_BLOCK(s, flush == Z_FINISH); return flush == Z_FINISH ? finish_done : block_done; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ local block_state deflate_fast(s, flush) deflate_state *s; int flush; { IPos hash_head = NIL; /* head of the hash chain */ int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ if (s->strategy != Z_HUFFMAN_ONLY) { s->match_length = longest_match (s, hash_head); } /* longest_match() sets match_start */ } if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->match_start, s->match_length); bflush = _tr_tally(s, s->strstart - s->match_start, s->match_length - MIN_MATCH); s->lookahead -= s->match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) { s->match_length--; /* string at strstart already in hash table */ do { s->strstart++; INSERT_STRING(s, s->strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s->match_length != 0); s->strstart++; } else { s->strstart += s->match_length; s->match_length = 0; s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); bflush = _tr_tally (s, 0, s->window[s->strstart]); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } FLUSH_BLOCK(s, flush == Z_FINISH); return flush == Z_FINISH ? finish_done : block_done; } /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ local block_state deflate_slow(s, flush) deflate_state *s; int flush; { IPos hash_head = NIL; /* head of hash chain */ int bflush; /* set if current block must be flushed */ /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. */ s->prev_length = s->match_length, s->prev_match = s->match_start; s->match_length = MIN_MATCH-1; if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ if (s->strategy != Z_HUFFMAN_ONLY) { s->match_length = longest_match (s, hash_head); } /* longest_match() sets match_start */ if (s->match_length <= 5 && (s->strategy == Z_FILTERED || (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR))) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s->match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ check_match(s, s->strstart-1, s->prev_match, s->prev_length); bflush = _tr_tally(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s->lookahead -= s->prev_length-1; s->prev_length -= 2; do { if (++s->strstart <= max_insert) { INSERT_STRING(s, s->strstart, hash_head); } } while (--s->prev_length != 0); s->match_available = 0; s->match_length = MIN_MATCH-1; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } else if (s->match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ Tracevv((stderr,"%c", s->window[s->strstart-1])); if (_tr_tally (s, 0, s->window[s->strstart-1])) { FLUSH_BLOCK_ONLY(s, 0); } s->strstart++; s->lookahead--; if (s->strm->avail_out == 0) return need_more; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally (s, 0, s->window[s->strstart-1]); s->match_available = 0; } FLUSH_BLOCK(s, flush == Z_FINISH); return flush == Z_FINISH ? finish_done : block_done; } to compare with, wait for * the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally (s, 0usr.lib/libz/deflate.h 444 2000 51 24153 6650544247 10247 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)deflate.h 5.1 (Berkeley) 1/18/99 */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* $Id: deflate.h,v 1.1.1.1 1997/03/19 15:06:37 kivinen Exp $ */ #ifndef _DEFLATE_H #define _DEFLATE_H #include "zutil.h" /* =========================================================================== * Internal compression state. */ #define LENGTH_CODES 29 /* number of length codes, not counting the special END_BLOCK code */ #define LITERALS 256 /* number of literal bytes 0..255 */ #define L_CODES (LITERALS+1+LENGTH_CODES) /* number of Literal or Length codes, including the END_BLOCK code */ #define D_CODES 30 /* number of distance codes */ #define BL_CODES 19 /* number of codes used to transfer the bit lengths */ #define HEAP_SIZE (2*L_CODES+1) /* maximum heap size */ #define MAX_BITS 15 /* All codes must not exceed MAX_BITS bits */ #define INIT_STATE 42 #define BUSY_STATE 113 #define FINISH_STATE 666 /* Stream status */ /* Data structure describing a single value and its code string. */ typedef struct ct_data_s { union { ush freq; /* frequency count */ ush code; /* bit string */ } fc; union { ush dad; /* father node in Huffman tree */ ush len; /* length of bit string */ } dl; } FAR ct_data; #define Freq fc.freq #define Code fc.code #define Dad dl.dad #define Len dl.len typedef struct static_tree_desc_s static_tree_desc; typedef struct tree_desc_s { ct_data *dyn_tree; /* the dynamic tree */ int max_code; /* largest code with non zero frequency */ static_tree_desc *stat_desc; /* the corresponding static tree */ } FAR tree_desc; typedef ush Pos; typedef Pos FAR Posf; typedef unsigned IPos; /* A Pos is an index in the character window. We use short instead of int to * save space in the various tables. IPos is used only for parameter passing. */ typedef struct internal_state { z_streamp strm; /* pointer back to this zlib stream */ int status; /* as the name implies */ Bytef *pending_buf; /* output still pending */ Bytef *pending_out; /* next pending byte to output to the stream */ int pending; /* nb of bytes in the pending buffer */ int noheader; /* suppress zlib header and adler32 */ Byte data_type; /* UNKNOWN, BINARY or ASCII */ Byte method; /* STORED (for zip only) or DEFLATED */ int last_flush; /* value of flush param for previous deflate call */ /* used by deflate.c: */ uInt w_size; /* LZ77 window size (32K by default) */ uInt w_bits; /* log2(w_size) (8..16) */ uInt w_mask; /* w_size - 1 */ Bytef *window; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. Also, it limits * the window size to 64K, which is quite useful on MSDOS. * To do: use the user input buffer as sliding window. */ ulg window_size; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ Posf *prev; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ Posf *head; /* Heads of the hash chains or NIL. */ uInt ins_h; /* hash index of string to be inserted */ uInt hash_size; /* number of elements in hash table */ uInt hash_bits; /* log2(hash_size) */ uInt hash_mask; /* hash_size-1 */ uInt hash_shift; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ long block_start; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ uInt match_length; /* length of best match */ IPos prev_match; /* previous match */ int match_available; /* set if previous match exists */ uInt strstart; /* start of string to insert */ uInt match_start; /* start of matching string */ uInt lookahead; /* number of valid bytes ahead in window */ uInt prev_length; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ uInt max_chain_length; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ uInt max_lazy_match; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ # define max_insert_length max_lazy_match /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ int level; /* compression level (1..9) */ int strategy; /* favor or force Huffman coding*/ uInt good_match; /* Use a faster search when the previous match is longer than this */ int nice_match; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to supress compiler warning */ struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ struct tree_desc_s l_desc; /* desc. for literal tree */ struct tree_desc_s d_desc; /* desc. for distance tree */ struct tree_desc_s bl_desc; /* desc. for bit length tree */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ int heap_len; /* number of elements in the heap */ int heap_max; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ uch depth[2*L_CODES+1]; /* Depth of each subtree used as tie breaker for trees of equal frequency */ uchf *l_buf; /* buffer for literals or lengths */ uInt lit_bufsize; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ uInt last_lit; /* running index in l_buf */ ushf *d_buf; /* Buffer for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ ulg opt_len; /* bit length of current block with optimal trees */ ulg static_len; /* bit length of current block with static trees */ ulg compressed_len; /* total bit length of compressed file */ uInt matches; /* number of string matches in current block */ int last_eob_len; /* bit length of EOB code for last block */ #ifdef DEBUG ulg bits_sent; /* bit length of the compressed data */ #endif ush bi_buf; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ int bi_valid; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ } FAR deflate_state; /* Output a byte on the stream. * IN assertion: there is enough room in pending_buf. */ #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) /* In order to simplify the code, particularly on 16 bit machines, match * distances are limited to MAX_DIST instead of WSIZE. */ /* in trees.c */ void _tr_init OF((deflate_state *s)); int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, int eof)); void _tr_align OF((deflate_state *s)); void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, int eof)); #endif implify the code, particularly on 16 bit machines, match * distances are limited to MAX_DIST instead of WSIZE. */ /* in trees.c */ void _tr_init OF((deflate_state *s)); int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, int eof)); void _tr_align OF((deflate_state *s)); void _tr_usr.lib/libz/gzio.c 444 2000 51 36444 6650544247 7614 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)gzio.c 5.1 (Berkeley) 1/18/99 */ /* $Id: gzio.c,v 1.1.1.1 1997/03/19 15:06:37 kivinen Exp $ */ #include #include "zutil.h" struct internal_state {int dummy;}; /* for buggy compilers */ #define Z_BUFSIZE 4096 #define ALLOC(size) malloc(size) #define TRYFREE(p) {if (p) free(p);} static int gz_magic[2] = {0x1f, 0x8b}; /* gzip magic header */ /* gzip flag byte */ #define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */ #define HEAD_CRC 0x02 /* bit 1 set: header CRC present */ #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */ #define ORIG_NAME 0x08 /* bit 3 set: original file name present */ #define COMMENT 0x10 /* bit 4 set: file comment present */ #define RESERVED 0xE0 /* bits 5..7: reserved */ typedef struct gz_stream { z_stream stream; int z_err; /* error code for last stream operation */ int z_eof; /* set if end of input file */ FILE *file; /* .gz file */ Byte *inbuf; /* input buffer */ Byte *outbuf; /* output buffer */ uLong crc; /* crc32 of uncompressed data */ char *msg; /* error message */ char *path; /* path name for debugging only */ int transparent; /* 1 if input file is not a .gz file */ char mode; /* 'w' or 'r' */ } gz_stream; local gzFile gz_open OF((const char *path, const char *mode, int fd)); local int get_byte OF((gz_stream *s)); local void check_header OF((gz_stream *s)); local int destroy OF((gz_stream *s)); local void putLong OF((FILE *file, uLong x)); local uLong getLong OF((gz_stream *s)); /* =========================================================================== Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen ("rb" or "wb"). The file is given either by file descriptor or path name (if fd == -1). gz_open return NULL if the file could not be opened or if there was insufficient memory to allocate the (de)compression state; errno can be checked to distinguish the two cases (if errno is zero, the zlib error is Z_MEM_ERROR). */ local gzFile gz_open (path, mode, fd) const char *path; const char *mode; int fd; { int err; int level = Z_DEFAULT_COMPRESSION; /* compression level */ char *p = (char*)mode; gz_stream *s; char fmode[80]; /* copy of mode, without the compression level */ char *m = fmode; if (!path || !mode) return Z_NULL; s = (gz_stream *)ALLOC(sizeof(gz_stream)); if (!s) return Z_NULL; s->stream.zalloc = (alloc_func)0; s->stream.zfree = (free_func)0; s->stream.opaque = (voidpf)0; s->stream.next_in = s->inbuf = Z_NULL; s->stream.next_out = s->outbuf = Z_NULL; s->stream.avail_in = s->stream.avail_out = 0; s->file = NULL; s->z_err = Z_OK; s->z_eof = 0; s->crc = crc32(0L, Z_NULL, 0); s->msg = NULL; s->transparent = 0; s->path = (char*)ALLOC(strlen(path)+1); if (s->path == NULL) { return destroy(s), (gzFile)Z_NULL; } strcpy(s->path, path); /* do this early for debugging */ s->mode = '\0'; do { if (*p == 'r') s->mode = 'r'; if (*p == 'w' || *p == 'a') s->mode = 'w'; if (*p >= '0' && *p <= '9') { level = *p - '0'; } else { *m++ = *p; /* copy the mode */ } } while (*p++ && m != fmode + sizeof(fmode)); if (s->mode == '\0') return destroy(s), (gzFile)Z_NULL; if (s->mode == 'w') { err = deflateInit2(&(s->stream), level, Z_DEFLATED, -MAX_WBITS, DEF_MEM_LEVEL, 0); /* windowBits is passed < 0 to suppress zlib header */ s->stream.next_out = s->outbuf = (Byte*)ALLOC(Z_BUFSIZE); if (err != Z_OK || s->outbuf == Z_NULL) { return destroy(s), (gzFile)Z_NULL; } } else { err = inflateInit2(&(s->stream), -MAX_WBITS); s->stream.next_in = s->inbuf = (Byte*)ALLOC(Z_BUFSIZE); if (err != Z_OK || s->inbuf == Z_NULL) { return destroy(s), (gzFile)Z_NULL; } } s->stream.avail_out = Z_BUFSIZE; errno = 0; s->file = fd < 0 ? FOPEN(path, fmode) : (FILE*)fdopen(fd, fmode); if (s->file == NULL) { return destroy(s), (gzFile)Z_NULL; } if (s->mode == 'w') { /* Write a very simple .gz header: */ fprintf(s->file, "%c%c%c%c%c%c%c%c%c%c", gz_magic[0], gz_magic[1], Z_DEFLATED, 0 /*flags*/, 0,0,0,0 /*time*/, 0 /*xflags*/, OS_CODE); } else { check_header(s); /* skip the .gz header */ } return (gzFile)s; } /* =========================================================================== Opens a gzip (.gz) file for reading or writing. */ gzFile gzopen (path, mode) const char *path; const char *mode; { return gz_open (path, mode, -1); } /* =========================================================================== Associate a gzFile with the file descriptor fd. fd is not dup'ed here to mimic the behavio(u)r of fdopen. */ gzFile gzdopen (fd, mode) int fd; const char *mode; { char name[20]; if (fd < 0) return (gzFile)Z_NULL; sprintf(name, "", fd); /* for debugging */ return gz_open (name, mode, fd); } /* =========================================================================== Read a byte from a gz_stream; update next_in and avail_in. Return EOF for end of file. IN assertion: the stream s has been sucessfully opened for reading. */ local int get_byte(s) gz_stream *s; { if (s->z_eof) return EOF; if (s->stream.avail_in == 0) { errno = 0; s->stream.avail_in = fread(s->inbuf, 1, Z_BUFSIZE, s->file); if (s->stream.avail_in == 0) { s->z_eof = 1; if (ferror(s->file)) s->z_err = Z_ERRNO; return EOF; } s->stream.next_in = s->inbuf; } s->stream.avail_in--; return *(s->stream.next_in)++; } /* =========================================================================== Check the gzip header of a gz_stream opened for reading. Set the stream mode to transparent if the gzip magic header is not present; set s->err to Z_DATA_ERROR if the magic header is present but the rest of the header is incorrect. IN assertion: the stream s has already been created sucessfully; s->stream.avail_in is zero for the first time, but may be non-zero for concatenated .gz files. */ local void check_header(s) gz_stream *s; { int method; /* method byte */ int flags; /* flags byte */ uInt len; int c; /* Check the gzip magic header */ for (len = 0; len < 2; len++) { c = get_byte(s); if (c != gz_magic[len]) { s->transparent = 1; if (c != EOF) s->stream.avail_in++, s->stream.next_in--; s->z_err = s->stream.avail_in != 0 ? Z_OK : Z_STREAM_END; return; } } method = get_byte(s); flags = get_byte(s); if (method != Z_DEFLATED || (flags & RESERVED) != 0) { s->z_err = Z_DATA_ERROR; return; } /* Discard time, xflags and OS code: */ for (len = 0; len < 6; len++) (void)get_byte(s); if ((flags & EXTRA_FIELD) != 0) { /* skip the extra field */ len = (uInt)get_byte(s); len += ((uInt)get_byte(s))<<8; /* len is garbage if EOF but the loop below will quit anyway */ while (len-- != 0 && get_byte(s) != EOF) ; } if ((flags & ORIG_NAME) != 0) { /* skip the original file name */ while ((c = get_byte(s)) != 0 && c != EOF) ; } if ((flags & COMMENT) != 0) { /* skip the .gz file comment */ while ((c = get_byte(s)) != 0 && c != EOF) ; } if ((flags & HEAD_CRC) != 0) { /* skip the header crc */ for (len = 0; len < 2; len++) (void)get_byte(s); } s->z_err = s->z_eof ? Z_DATA_ERROR : Z_OK; } /* =========================================================================== * Cleanup then free the given gz_stream. Return a zlib error code. Try freeing in the reverse order of allocations. */ local int destroy (s) gz_stream *s; { int err = Z_OK; if (!s) return Z_STREAM_ERROR; TRYFREE(s->msg); if (s->stream.state != NULL) { if (s->mode == 'w') { err = deflateEnd(&(s->stream)); } else if (s->mode == 'r') { err = inflateEnd(&(s->stream)); } } if (s->file != NULL && fclose(s->file)) { err = Z_ERRNO; } if (s->z_err < 0) err = s->z_err; TRYFREE(s->inbuf); TRYFREE(s->outbuf); TRYFREE(s->path); TRYFREE(s); return err; } /* =========================================================================== Reads the given number of uncompressed bytes from the compressed file. gzread returns the number of bytes actually read (0 for end of file). */ int gzread (file, buf, len) gzFile file; voidp buf; unsigned len; { gz_stream *s = (gz_stream*)file; Bytef *start = buf; /* starting point for crc computation */ Byte *next_out; /* == stream.next_out but not forced far (for MSDOS) */ if (s == NULL || s->mode != 'r') return Z_STREAM_ERROR; if (s->z_err == Z_DATA_ERROR || s->z_err == Z_ERRNO) return -1; if (s->z_err == Z_STREAM_END) return 0; /* EOF */ s->stream.next_out = next_out = buf; s->stream.avail_out = len; while (s->stream.avail_out != 0) { if (s->transparent) { /* Copy first the lookahead bytes: */ uInt n = s->stream.avail_in; if (n > s->stream.avail_out) n = s->stream.avail_out; if (n > 0) { zmemcpy(s->stream.next_out, s->stream.next_in, n); next_out += n; s->stream.next_out = next_out; s->stream.next_in += n; s->stream.avail_out -= n; s->stream.avail_in -= n; } if (s->stream.avail_out > 0) { s->stream.avail_out -= fread(next_out, 1, s->stream.avail_out, s->file); } return (int)(len - s->stream.avail_out); } if (s->stream.avail_in == 0 && !s->z_eof) { errno = 0; s->stream.avail_in = fread(s->inbuf, 1, Z_BUFSIZE, s->file); if (s->stream.avail_in == 0) { s->z_eof = 1; if (ferror(s->file)) { s->z_err = Z_ERRNO; break; } } s->stream.next_in = s->inbuf; } s->z_err = inflate(&(s->stream), Z_NO_FLUSH); if (s->z_err == Z_STREAM_END) { /* Check CRC and original size */ s->crc = crc32(s->crc, start, (uInt)(s->stream.next_out - start)); start = s->stream.next_out; if (getLong(s) != s->crc || getLong(s) != s->stream.total_out) { s->z_err = Z_DATA_ERROR; } else { /* Check for concatenated .gz files: */ check_header(s); if (s->z_err == Z_OK) { inflateReset(&(s->stream)); s->crc = crc32(0L, Z_NULL, 0); } } } if (s->z_err != Z_OK || s->z_eof) break; } s->crc = crc32(s->crc, start, (uInt)(s->stream.next_out - start)); return (int)(len - s->stream.avail_out); } /* =========================================================================== Writes the given number of uncompressed bytes into the compressed file. gzwrite returns the number of bytes actually written (0 in case of error). */ int gzwrite (file, buf, len) gzFile file; const voidp buf; unsigned len; { gz_stream *s = (gz_stream*)file; if (s == NULL || s->mode != 'w') return Z_STREAM_ERROR; s->stream.next_in = buf; s->stream.avail_in = len; while (s->stream.avail_in != 0) { if (s->stream.avail_out == 0) { s->stream.next_out = s->outbuf; if (fwrite(s->outbuf, 1, Z_BUFSIZE, s->file) != Z_BUFSIZE) { s->z_err = Z_ERRNO; break; } s->stream.avail_out = Z_BUFSIZE; } s->z_err = deflate(&(s->stream), Z_NO_FLUSH); if (s->z_err != Z_OK) break; } s->crc = crc32(s->crc, buf, len); return (int)(len - s->stream.avail_in); } /* =========================================================================== Flushes all pending output into the compressed file. The parameter flush is as in the deflate() function. gzflush should be called only when strictly necessary because it can degrade compression. */ int gzflush (file, flush) gzFile file; int flush; { uInt len; int done = 0; gz_stream *s = (gz_stream*)file; if (s == NULL || s->mode != 'w') return Z_STREAM_ERROR; s->stream.avail_in = 0; /* should be zero already anyway */ for (;;) { len = Z_BUFSIZE - s->stream.avail_out; if (len != 0) { if ((uInt)fwrite(s->outbuf, 1, len, s->file) != len) { s->z_err = Z_ERRNO; return Z_ERRNO; } s->stream.next_out = s->outbuf; s->stream.avail_out = Z_BUFSIZE; } if (done) break; s->z_err = deflate(&(s->stream), flush); /* deflate has finished flushing only when it hasn't used up * all the available space in the output buffer: */ done = (s->stream.avail_out != 0 || s->z_err == Z_STREAM_END); if (s->z_err != Z_OK && s->z_err != Z_STREAM_END) break; } fflush(s->file); return s->z_err == Z_STREAM_END ? Z_OK : s->z_err; } /* =========================================================================== Outputs a long in LSB order to the given file */ local void putLong (file, x) FILE *file; uLong x; { int n; for (n = 0; n < 4; n++) { fputc((int)(x & 0xff), file); x >>= 8; } } /* =========================================================================== Reads a long in LSB order from the given gz_stream. Sets */ local uLong getLong (s) gz_stream *s; { uLong x = (uLong)get_byte(s); int c; x += ((uLong)get_byte(s))<<8; x += ((uLong)get_byte(s))<<16; c = get_byte(s); if (c == EOF) s->z_err = Z_DATA_ERROR; x += ((uLong)c)<<24; return x; } /* =========================================================================== Flushes all pending output if necessary, closes the compressed file and deallocates all the (de)compression state. */ int gzclose (file) gzFile file; { int err; gz_stream *s = (gz_stream*)file; if (s == NULL) return Z_STREAM_ERROR; if (s->mode == 'w') { err = gzflush (file, Z_FINISH); if (err != Z_OK) return destroy(file); putLong (s->file, s->crc); putLong (s->file, s->stream.total_in); } return destroy(file); } /* =========================================================================== Returns the error message for the last error which occured on the given compressed file. errnum is set to zlib error number. If an error occured in the file system and not in the compression library, errnum is set to Z_ERRNO and the application may consult errno to get the exact error code. */ const char* gzerror (file, errnum) gzFile file; int *errnum; { char *m; gz_stream *s = (gz_stream*)file; if (s == NULL) { *errnum = Z_STREAM_ERROR; return (const char*)ERR_MSG(Z_STREAM_ERROR); } *errnum = s->z_err; if (*errnum == Z_OK) return (const char*)""; m = (char*)(*errnum == Z_ERRNO ? zstrerror(errno) : s->stream.msg); if (m == NULL || *m == '\0') m = (char*)ERR_MSG(s->z_err); TRYFREE(s->msg); s->msg = (char*)ALLOC(strlen(s->path) + strlen(m) + 3); strcpy(s->msg, s->path); strcat(s->msg, ": "); strcat(s->msg, m); return (const char*)s->msg; } (s == NULL) { *errnum = Z_STREAM_ERROR; return (const char*)ERR_MSG(Z_STREAM_ERROR); } *errnum = s->z_err; if (*errnum == Z_OK) return (const char*)""; m = (char*)(*errnum == Z_ERRNO ? zusr.lib/libz/inffast.c 444 2000 51 12740 6650544247 10267 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)inffast.c 5.1 (Berkeley) 1/18/99 */ #include "zutil.h" #include "inftrees.h" #include "infblock.h" #include "infcodes.h" #include "infutil.h" #include "inffast.h" struct inflate_codes_state {int dummy;}; /* for buggy compilers */ /* simplify the use of the inflate_huft type with some defines */ #define base more.Base #define next more.Next #define exop word.what.Exop #define bits word.what.Bits /* macros for bit input with no checking and for returning unused bytes */ #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<>3);p-=c;k&=7;} /* Called with number of bytes left to write in window at least 258 (the maximum string length) and number of input bytes available at least ten. The ten bytes are six bytes for the longest length/ distance pair plus four bytes for overloading the bit buffer. */ int inflate_fast(bl, bd, tl, td, s, z) uInt bl, bd; inflate_huft *tl; inflate_huft *td; /* need separate declaration for Borland C++ */ inflate_blocks_statef *s; z_streamp z; { inflate_huft *t; /* temporary pointer */ uInt e; /* extra bits or operation */ uLong b; /* bit buffer */ uInt k; /* bits in bit buffer */ Bytef *p; /* input data pointer */ uInt n; /* bytes available there */ Bytef *q; /* output window write pointer */ uInt m; /* bytes to end of window or read pointer */ uInt ml; /* mask for literal/length tree */ uInt md; /* mask for distance tree */ uInt c; /* bytes to copy */ uInt d; /* distance back to copy from */ Bytef *r; /* copy source pointer */ /* load input, output, bit values */ LOAD /* initialize masks */ ml = inflate_mask[bl]; md = inflate_mask[bd]; /* do until not enough input or output space for fast loop */ do { /* assume called with m >= 258 && n >= 10 */ /* get literal/length code */ GRABBITS(20) /* max bits for literal/length code */ if ((e = (t = tl + ((uInt)b & ml))->exop) == 0) { DUMPBITS(t->bits) Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: * literal '%c'\n" : "inflate: * literal 0x%02x\n", t->base)); *q++ = (Byte)t->base; m--; continue; } do { DUMPBITS(t->bits) if (e & 16) { /* get extra bits for length */ e &= 15; c = t->base + ((uInt)b & inflate_mask[e]); DUMPBITS(e) Tracevv((stderr, "inflate: * length %u\n", c)); /* decode distance base of block to copy */ GRABBITS(15); /* max bits for distance code */ e = (t = td + ((uInt)b & md))->exop; do { DUMPBITS(t->bits) if (e & 16) { /* get extra bits to add to distance base */ e &= 15; GRABBITS(e) /* get extra bits (up to 13) */ d = t->base + ((uInt)b & inflate_mask[e]); DUMPBITS(e) Tracevv((stderr, "inflate: * distance %u\n", d)); /* do the copy */ m -= c; if ((uInt)(q - s->window) >= d) /* offset before dest */ { /* just copy */ r = q - d; *q++ = *r++; c--; /* minimum count is three, */ *q++ = *r++; c--; /* so unroll loop a little */ } else /* else offset after destination */ { e = d - (uInt)(q - s->window); /* bytes from offset to end */ r = s->end - e; /* pointer to offset */ if (c > e) /* if source crosses, */ { c -= e; /* copy to end of window */ do { *q++ = *r++; } while (--e); r = s->window; /* copy rest from start of window */ } } do { /* copy all or what's left */ *q++ = *r++; } while (--c); break; } else if ((e & 64) == 0) e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop; else { z->msg = (char*)"invalid distance code"; UNGRAB UPDATE return Z_DATA_ERROR; } } while (1); break; } if ((e & 64) == 0) { if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0) { DUMPBITS(t->bits) Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: * literal '%c'\n" : "inflate: * literal 0x%02x\n", t->base)); *q++ = (Byte)t->base; m--; break; } } else if (e & 32) { Tracevv((stderr, "inflate: * end of block\n")); UNGRAB UPDATE return Z_STREAM_END; } else { z->msg = (char*)"invalid literal/length code"; UNGRAB UPDATE return Z_DATA_ERROR; } } while (1); } while (m >= 258 && n >= 10); /* not enough input or output--restore pointers and return */ UNGRAB UPDATE return Z_OK; } t->base; m--; usr.lib/libz/infblock.c 444 2000 51 30472 6650544250 10420 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)infblock.c 5.1 (Berkeley) 1/18/99 */ #include "zutil.h" #include "infblock.h" #include "inftrees.h" #include "infcodes.h" #include "infutil.h" struct inflate_codes_state {int dummy;}; /* for buggy compilers */ /* Table for deflate from PKZIP's appnote.txt. */ local uInt border[] = { /* Order of the bit length code lengths */ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; /* Notes beyond the 1.93a appnote.txt: 1. Distance pointers never point before the beginning of the output stream. 2. Distance pointers can point back across blocks, up to 32k away. 3. There is an implied maximum of 7 bits for the bit length table and 15 bits for the actual data. 4. If only one code exists, then it is encoded using one bit. (Zero would be more efficient, but perhaps a little confusing.) If two codes exist, they are coded using one bit each (0 and 1). 5. There is no way of sending zero distance codes--a dummy must be sent if there are none. (History: a pre 2.0 version of PKZIP would store blocks with no distance codes, but this was discovered to be too harsh a criterion.) Valid only for 1.93a. 2.04c does allow zero distance codes, which is sent as one code of zero bits in length. 6. There are up to 286 literal/length codes. Code 256 represents the end-of-block. Note however that the static length tree defines 288 codes just to fill out the Huffman codes. Codes 286 and 287 cannot be used though, since there is no length base or extra bits defined for them. Similarily, there are up to 30 distance codes. However, static trees define 32 codes (all 5 bits) to fill out the Huffman codes, but the last two had better not show up in the data. 7. Unzip can check dynamic Huffman blocks for complete code sets. The exception is that a single code would not be complete (see #4). 8. The five bits following the block type is really the number of literal codes sent minus 257. 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits (1+6+6). Therefore, to output three times the length, you output three codes (1+1+1), whereas to output four times the same length, you only need two codes (1+3). Hmm. 10. In the tree reconstruction algorithm, Code = Code + Increment only if BitLength(i) is not zero. (Pretty obvious.) 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) 12. Note: length code 284 can represent 227-258, but length code 285 really is 258. The last length deserves its own, short code since it gets used a lot in very redundant files. The length 258 is special since 258 - 3 (the min match length) is 255. 13. The literal/length and distance code bit lengths are read as a single stream of lengths. It is possible (and advantageous) for a repeat code (16, 17, or 18) to go across the boundary between the two sets of lengths. */ void inflate_blocks_reset(s, z, c) inflate_blocks_statef *s; z_streamp z; uLongf *c; { if (s->checkfn != Z_NULL) *c = s->check; if (s->mode == BTREE || s->mode == DTREE) ZFREE(z, s->sub.trees.blens); if (s->mode == CODES) { inflate_codes_free(s->sub.decode.codes, z); inflate_trees_free(s->sub.decode.td, z); inflate_trees_free(s->sub.decode.tl, z); } s->mode = TYPE; s->bitk = 0; s->bitb = 0; s->read = s->write = s->window; if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0); Trace((stderr, "inflate: blocks reset\n")); } inflate_blocks_statef *inflate_blocks_new(z, c, w) z_streamp z; check_func c; uInt w; { inflate_blocks_statef *s; if ((s = (inflate_blocks_statef *)ZALLOC (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL) return s; if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL) { ZFREE(z, s); return Z_NULL; } s->end = s->window + w; s->checkfn = c; s->mode = TYPE; Trace((stderr, "inflate: blocks allocated\n")); inflate_blocks_reset(s, z, &s->check); return s; } #ifdef DEBUG extern uInt inflate_hufts; #endif int inflate_blocks(s, z, r) inflate_blocks_statef *s; z_streamp z; int r; { uInt t; /* temporary storage */ uLong b; /* bit buffer */ uInt k; /* bits in bit buffer */ Bytef *p; /* input data pointer */ uInt n; /* bytes available there */ Bytef *q; /* output window write pointer */ uInt m; /* bytes to end of window or read pointer */ /* copy input/output information to locals (UPDATE macro restores) */ LOAD /* process input based on current state */ while (1) switch (s->mode) { case TYPE: NEEDBITS(3) t = (uInt)b & 7; s->last = t & 1; switch (t >> 1) { case 0: /* stored */ Trace((stderr, "inflate: stored block%s\n", s->last ? " (last)" : "")); DUMPBITS(3) t = k & 7; /* go to byte boundary */ DUMPBITS(t) s->mode = LENS; /* get length of stored block */ break; case 1: /* fixed */ Trace((stderr, "inflate: fixed codes block%s\n", s->last ? " (last)" : "")); { uInt bl, bd; inflate_huft *tl, *td; inflate_trees_fixed(&bl, &bd, &tl, &td); s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z); if (s->sub.decode.codes == Z_NULL) { r = Z_MEM_ERROR; LEAVE } s->sub.decode.tl = Z_NULL; /* don't try to free these */ s->sub.decode.td = Z_NULL; } DUMPBITS(3) s->mode = CODES; break; case 2: /* dynamic */ Trace((stderr, "inflate: dynamic codes block%s\n", s->last ? " (last)" : "")); DUMPBITS(3) s->mode = TABLE; break; case 3: /* illegal */ DUMPBITS(3) s->mode = BAD; z->msg = (char*)"invalid block type"; r = Z_DATA_ERROR; LEAVE } break; case LENS: NEEDBITS(32) if ((((~b) >> 16) & 0xffff) != (b & 0xffff)) { s->mode = BAD; z->msg = (char*)"invalid stored block lengths"; r = Z_DATA_ERROR; LEAVE } s->sub.left = (uInt)b & 0xffff; b = k = 0; /* dump bits */ Tracev((stderr, "inflate: stored length %u\n", s->sub.left)); s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE); break; case STORED: if (n == 0) LEAVE NEEDOUT t = s->sub.left; if (t > n) t = n; if (t > m) t = m; zmemcpy(q, p, t); p += t; n -= t; q += t; m -= t; if ((s->sub.left -= t) != 0) break; Tracev((stderr, "inflate: stored end, %lu total out\n", z->total_out + (q >= s->read ? q - s->read : (s->end - s->read) + (q - s->window)))); s->mode = s->last ? DRY : TYPE; break; case TABLE: NEEDBITS(14) s->sub.trees.table = t = (uInt)b & 0x3fff; #ifndef PKZIP_BUG_WORKAROUND if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) { s->mode = BAD; z->msg = (char*)"too many length or distance symbols"; r = Z_DATA_ERROR; LEAVE } #endif t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); if (t < 19) t = 19; if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL) { r = Z_MEM_ERROR; LEAVE } DUMPBITS(14) s->sub.trees.index = 0; Tracev((stderr, "inflate: table sizes ok\n")); s->mode = BTREE; case BTREE: while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10)) { NEEDBITS(3) s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7; DUMPBITS(3) } while (s->sub.trees.index < 19) s->sub.trees.blens[border[s->sub.trees.index++]] = 0; s->sub.trees.bb = 7; t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb, &s->sub.trees.tb, z); if (t != Z_OK) { r = t; if (r == Z_DATA_ERROR) s->mode = BAD; LEAVE } s->sub.trees.index = 0; Tracev((stderr, "inflate: bits tree ok\n")); s->mode = DTREE; case DTREE: while (t = s->sub.trees.table, s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)) { inflate_huft *h; uInt i, j, c; t = s->sub.trees.bb; NEEDBITS(t) h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]); t = h->word.what.Bits; c = h->more.Base; if (c < 16) { DUMPBITS(t) s->sub.trees.blens[s->sub.trees.index++] = c; } else /* c == 16..18 */ { i = c == 18 ? 7 : c - 14; j = c == 18 ? 11 : 3; NEEDBITS(t + i) DUMPBITS(t) j += (uInt)b & inflate_mask[i]; DUMPBITS(i) i = s->sub.trees.index; t = s->sub.trees.table; if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || (c == 16 && i < 1)) { s->mode = BAD; z->msg = (char*)"invalid bit length repeat"; r = Z_DATA_ERROR; LEAVE } c = c == 16 ? s->sub.trees.blens[i - 1] : 0; do { s->sub.trees.blens[i++] = c; } while (--j); s->sub.trees.index = i; } } inflate_trees_free(s->sub.trees.tb, z); s->sub.trees.tb = Z_NULL; { uInt bl, bd; inflate_huft *tl, *td; inflate_codes_statef *c; bl = 9; /* must be <= 9 for lookahead assumptions */ bd = 6; /* must be <= 9 for lookahead assumptions */ t = s->sub.trees.table; #ifdef DEBUG inflate_hufts = 0; #endif t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), s->sub.trees.blens, &bl, &bd, &tl, &td, z); if (t != Z_OK) { if (t == (uInt)Z_DATA_ERROR) s->mode = BAD; r = t; LEAVE } Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n", inflate_hufts, sizeof(inflate_huft))); if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL) { inflate_trees_free(td, z); inflate_trees_free(tl, z); r = Z_MEM_ERROR; LEAVE } ZFREE(z, s->sub.trees.blens); s->sub.decode.codes = c; s->sub.decode.tl = tl; s->sub.decode.td = td; } s->mode = CODES; case CODES: UPDATE if ((r = inflate_codes(s, z, r)) != Z_STREAM_END) return inflate_flush(s, z, r); r = Z_OK; inflate_codes_free(s->sub.decode.codes, z); inflate_trees_free(s->sub.decode.td, z); inflate_trees_free(s->sub.decode.tl, z); LOAD Tracev((stderr, "inflate: codes end, %lu total out\n", z->total_out + (q >= s->read ? q - s->read : (s->end - s->read) + (q - s->window)))); if (!s->last) { s->mode = TYPE; break; } if (k > 7) /* return unused byte, if any */ { Assert(k < 16, "inflate_codes grabbed too many bytes") k -= 8; n++; p--; /* can always return one */ } s->mode = DRY; case DRY: FLUSH if (s->read != s->write) LEAVE s->mode = DONE; case DONE: r = Z_STREAM_END; LEAVE case BAD: r = Z_DATA_ERROR; LEAVE default: r = Z_STREAM_ERROR; LEAVE } } int inflate_blocks_free(s, z, c) inflate_blocks_statef *s; z_streamp z; uLongf *c; { inflate_blocks_reset(s, z, c); ZFREE(z, s->window); ZFREE(z, s); Trace((stderr, "inflate: blocks freed\n")); return Z_OK; } void inflate_set_dictionary(s, d, n) inflate_blocks_statef *s; const Bytef *d; uInt n; { zmemcpy((charf *)s->window, d, n); s->read = s->write = s->window + n; } LEAVE case BAD: r = Z_DATA_ERROR; LEAVE default: r = Z_STREAM_ERROR; LEAVE } } int inflate_blocks_free(s, z, c) inflate_blocks_statef *s; z_streamp z; uLonusr.lib/libz/infblock.h 444 2000 51 2277 6650544250 10407 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)infblock.h 5.1 (Berkeley) 1/18/99 */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ struct inflate_blocks_state; typedef struct inflate_blocks_state FAR inflate_blocks_statef; extern inflate_blocks_statef * inflate_blocks_new OF(( z_streamp z, check_func c, /* check function */ uInt w)); /* window size */ extern int inflate_blocks OF(( inflate_blocks_statef *, z_streamp , int)); /* initial return code */ extern void inflate_blocks_reset OF(( inflate_blocks_statef *, z_streamp , uLongf *)); /* check value on output */ extern int inflate_blocks_free OF(( inflate_blocks_statef *, z_streamp , uLongf *)); /* check value on output */ extern void inflate_set_dictionary OF(( inflate_blocks_statef *s, const Bytef *d, /* dictionary */ uInt n)); /* dictionary length */ z_streamp , int)); /* initial return code */ extern void inflate_blocks_reset OF(( inflate_blocks_statef *, z_streamp , uLongf *)); /* check value on output */ extern int inflate_blocks_free OF(( inflate_blocks_statef *, z_streamp , uLongf *)); usr.lib/libz/infcodes.c 444 2000 51 16461 6650544250 10425 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)infcodes.c 5.1 (Berkeley) 1/18/99 */ #include "zutil.h" #include "inftrees.h" #include "infblock.h" #include "infcodes.h" #include "infutil.h" #include "inffast.h" /* simplify the use of the inflate_huft type with some defines */ #define base more.Base #define next more.Next #define exop word.what.Exop #define bits word.what.Bits /* inflate codes private state */ struct inflate_codes_state { /* mode */ enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */ START, /* x: set up for LEN */ LEN, /* i: get length/literal/eob next */ LENEXT, /* i: getting length extra (have base) */ DIST, /* i: get distance next */ DISTEXT, /* i: getting distance extra */ COPY, /* o: copying bytes in window, waiting for space */ LIT, /* o: got literal, waiting for output space */ WASH, /* o: got eob, possibly still output waiting */ END, /* x: got eob and all data flushed */ BADCODE} /* x: got error */ mode; /* current inflate_codes mode */ /* mode dependent information */ uInt len; union { struct { inflate_huft *tree; /* pointer into tree */ uInt need; /* bits needed */ } code; /* if LEN or DIST, where in tree */ uInt lit; /* if LIT, literal */ struct { uInt get; /* bits to get for extra */ uInt dist; /* distance back to copy from */ } copy; /* if EXT or COPY, where and how much */ } sub; /* submode */ /* mode independent information */ Byte lbits; /* ltree bits decoded per branch */ Byte dbits; /* dtree bits decoder per branch */ inflate_huft *ltree; /* literal/length/eob tree */ inflate_huft *dtree; /* distance tree */ }; inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z) uInt bl, bd; inflate_huft *tl; inflate_huft *td; /* need separate declaration for Borland C++ */ z_streamp z; { inflate_codes_statef *c; if ((c = (inflate_codes_statef *) ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL) { c->mode = START; c->lbits = (Byte)bl; c->dbits = (Byte)bd; c->ltree = tl; c->dtree = td; Tracev((stderr, "inflate: codes new\n")); } return c; } int inflate_codes(s, z, r) inflate_blocks_statef *s; z_streamp z; int r; { uInt j; /* temporary storage */ inflate_huft *t; /* temporary pointer */ uInt e; /* extra bits or operation */ uLong b; /* bit buffer */ uInt k; /* bits in bit buffer */ Bytef *p; /* input data pointer */ uInt n; /* bytes available there */ Bytef *q; /* output window write pointer */ uInt m; /* bytes to end of window or read pointer */ Bytef *f; /* pointer to copy strings from */ inflate_codes_statef *c = s->sub.decode.codes; /* codes state */ /* copy input/output information to locals (UPDATE macro restores) */ LOAD /* process input and output based on current state */ while (1) switch (c->mode) { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */ case START: /* x: set up for LEN */ #ifndef SLOW if (m >= 258 && n >= 10) { UPDATE r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z); LOAD if (r != Z_OK) { c->mode = r == Z_STREAM_END ? WASH : BADCODE; break; } } #endif /* !SLOW */ c->sub.code.need = c->lbits; c->sub.code.tree = c->ltree; c->mode = LEN; case LEN: /* i: get length/literal/eob next */ j = c->sub.code.need; NEEDBITS(j) t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); DUMPBITS(t->bits) e = (uInt)(t->exop); if (e == 0) /* literal */ { c->sub.lit = t->base; Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", t->base)); c->mode = LIT; break; } if (e & 16) /* length */ { c->sub.copy.get = e & 15; c->len = t->base; c->mode = LENEXT; break; } if ((e & 64) == 0) /* next table */ { c->sub.code.need = e; c->sub.code.tree = t->next; break; } if (e & 32) /* end of block */ { Tracevv((stderr, "inflate: end of block\n")); c->mode = WASH; break; } c->mode = BADCODE; /* invalid code */ z->msg = (char*)"invalid literal/length code"; r = Z_DATA_ERROR; LEAVE case LENEXT: /* i: getting length extra (have base) */ j = c->sub.copy.get; NEEDBITS(j) c->len += (uInt)b & inflate_mask[j]; DUMPBITS(j) c->sub.code.need = c->dbits; c->sub.code.tree = c->dtree; Tracevv((stderr, "inflate: length %u\n", c->len)); c->mode = DIST; case DIST: /* i: get distance next */ j = c->sub.code.need; NEEDBITS(j) t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); DUMPBITS(t->bits) e = (uInt)(t->exop); if (e & 16) /* distance */ { c->sub.copy.get = e & 15; c->sub.copy.dist = t->base; c->mode = DISTEXT; break; } if ((e & 64) == 0) /* next table */ { c->sub.code.need = e; c->sub.code.tree = t->next; break; } c->mode = BADCODE; /* invalid code */ z->msg = (char*)"invalid distance code"; r = Z_DATA_ERROR; LEAVE case DISTEXT: /* i: getting distance extra */ j = c->sub.copy.get; NEEDBITS(j) c->sub.copy.dist += (uInt)b & inflate_mask[j]; DUMPBITS(j) Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist)); c->mode = COPY; case COPY: /* o: copying bytes in window, waiting for space */ #ifndef __TURBOC__ /* Turbo C bug for following expression */ f = (uInt)(q - s->window) < c->sub.copy.dist ? s->end - (c->sub.copy.dist - (q - s->window)) : q - c->sub.copy.dist; #else f = q - c->sub.copy.dist; if ((uInt)(q - s->window) < c->sub.copy.dist) f = s->end - (c->sub.copy.dist - (uInt)(q - s->window)); #endif while (c->len) { NEEDOUT OUTBYTE(*f++) if (f == s->end) f = s->window; c->len--; } c->mode = START; break; case LIT: /* o: got literal, waiting for output space */ NEEDOUT OUTBYTE(c->sub.lit) c->mode = START; break; case WASH: /* o: got eob, possibly more output */ FLUSH if (s->read != s->write) LEAVE c->mode = END; case END: r = Z_STREAM_END; LEAVE case BADCODE: /* x: got error */ r = Z_DATA_ERROR; LEAVE default: r = Z_STREAM_ERROR; LEAVE } } void inflate_codes_free(c, z) inflate_codes_statef *c; z_streamp z; { ZFREE(z, c); Tracev((stderr, "inflate: codes free\n")); } sub.lit) c->mode = START; break; case WASH: /* o: got eob, possibly more output */ FLUSH if (s->read != s->write) LEAVE c->mode = END; case END: rusr.lib/libz/infcodes.h 444 2000 51 1361 6650544250 10403 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)infcodes.h 5.1 (Berkeley) 1/18/99 */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ struct inflate_codes_state; typedef struct inflate_codes_state FAR inflate_codes_statef; extern inflate_codes_statef *inflate_codes_new OF(( uInt, uInt, inflate_huft *, inflate_huft *, z_streamp )); extern int inflate_codes OF(( inflate_blocks_statef *, z_streamp , int)); extern void inflate_codes_free OF(( inflate_codes_statef *, z_streamp )); part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ struct inflate_codes_state; typedef struct inflate_codes_state FAR inflate_codes_statef; extern inflate_codes_statef *inflate_codes_new OF(( usr.lib/libz/inffast.h 444 2000 51 771 6650544250 10227 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)inffast.h 5.1 (Berkeley) 1/18/99 */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ extern int inflate_fast OF(( uInt, uInt, inflate_huft *, inflate_huft *, inflate_blocks_statef *, z_streamp )); w OF(( usr.lib/libz/inflate.c 444 2000 51 20476 6650544251 10257 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)inflate.c 5.1 (Berkeley) 1/18/99 */ #include "zutil.h" #include "infblock.h" struct inflate_blocks_state {int dummy;}; /* for buggy compilers */ /* inflate private state */ struct internal_state { /* mode */ enum { METHOD, /* waiting for method byte */ FLAG, /* waiting for flag byte */ DICT4, /* four dictionary check bytes to go */ DICT3, /* three dictionary check bytes to go */ DICT2, /* two dictionary check bytes to go */ DICT1, /* one dictionary check byte to go */ DICT0, /* waiting for inflateSetDictionary */ BLOCKS, /* decompressing blocks */ CHECK4, /* four check bytes to go */ CHECK3, /* three check bytes to go */ CHECK2, /* two check bytes to go */ CHECK1, /* one check byte to go */ DONE, /* finished check, done */ BAD} /* got an error--stay here */ mode; /* current inflate mode */ /* mode dependent information */ union { uInt method; /* if FLAGS, method byte */ struct { uLong was; /* computed check value */ uLong need; /* stream check value */ } check; /* if CHECK, check values to compare */ uInt marker; /* if BAD, inflateSync's marker bytes count */ } sub; /* submode */ /* mode independent information */ int nowrap; /* flag for no wrapper */ uInt wbits; /* log2(window size) (8..15, defaults to 15) */ inflate_blocks_statef *blocks; /* current inflate_blocks state */ }; int inflateReset(z) z_streamp z; { uLong c; if (z == Z_NULL || z->state == Z_NULL) return Z_STREAM_ERROR; z->total_in = z->total_out = 0; z->msg = Z_NULL; z->state->mode = z->state->nowrap ? BLOCKS : METHOD; inflate_blocks_reset(z->state->blocks, z, &c); Trace((stderr, "inflate: reset\n")); return Z_OK; } int inflateEnd(z) z_streamp z; { uLong c; if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL) return Z_STREAM_ERROR; if (z->state->blocks != Z_NULL) inflate_blocks_free(z->state->blocks, z, &c); ZFREE(z, z->state); z->state = Z_NULL; Trace((stderr, "inflate: end\n")); return Z_OK; } int inflateInit2(z, w) z_streamp z; int w; { /* initialize state */ if (z == Z_NULL) return Z_STREAM_ERROR; z->msg = Z_NULL; if (z->zalloc == Z_NULL) { z->zalloc = zcalloc; z->opaque = (voidpf)0; } if (z->zfree == Z_NULL) z->zfree = zcfree; if ((z->state = (struct internal_state FAR *) ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL) return Z_MEM_ERROR; z->state->blocks = Z_NULL; /* handle undocumented nowrap option (no zlib header or check) */ z->state->nowrap = 0; if (w < 0) { w = - w; z->state->nowrap = 1; } /* set window size */ if (w < 8 || w > 15) { inflateEnd(z); return Z_STREAM_ERROR; } z->state->wbits = (uInt)w; /* create inflate_blocks state */ if ((z->state->blocks = inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w)) == Z_NULL) { inflateEnd(z); return Z_MEM_ERROR; } Trace((stderr, "inflate: allocated\n")); /* reset state */ inflateReset(z); return Z_OK; } int inflateInit(z) z_streamp z; { return inflateInit2(z, DEF_WBITS); } #define NEEDBYTE {if(z->avail_in==0)return r;r=Z_OK;} #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++) int inflate(z, f) z_streamp z; int f; { int r; uInt b; if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0) return Z_STREAM_ERROR; r = Z_BUF_ERROR; while (1) switch (z->state->mode) { case METHOD: NEEDBYTE if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED) { z->state->mode = BAD; z->msg = (char*)"unknown compression method"; z->state->sub.marker = 5; /* can't try inflateSync */ break; } if ((z->state->sub.method >> 4) + 8 > z->state->wbits) { z->state->mode = BAD; z->msg = (char*)"invalid window size"; z->state->sub.marker = 5; /* can't try inflateSync */ break; } z->state->mode = FLAG; case FLAG: NEEDBYTE b = NEXTBYTE; if (((z->state->sub.method << 8) + b) % 31) { z->state->mode = BAD; z->msg = (char*)"incorrect header check"; z->state->sub.marker = 5; /* can't try inflateSync */ break; } Trace((stderr, "inflate: zlib header ok\n")); if (!(b & PRESET_DICT)) { z->state->mode = BLOCKS; break; } z->state->mode = DICT4; case DICT4: NEEDBYTE z->state->sub.check.need = (uLong)NEXTBYTE << 24; z->state->mode = DICT3; case DICT3: NEEDBYTE z->state->sub.check.need += (uLong)NEXTBYTE << 16; z->state->mode = DICT2; case DICT2: NEEDBYTE z->state->sub.check.need += (uLong)NEXTBYTE << 8; z->state->mode = DICT1; case DICT1: NEEDBYTE z->state->sub.check.need += (uLong)NEXTBYTE; z->adler = z->state->sub.check.need; z->state->mode = DICT0; return Z_NEED_DICT; case DICT0: z->state->mode = BAD; z->msg = (char*)"need dictionary"; z->state->sub.marker = 0; /* can try inflateSync */ return Z_STREAM_ERROR; case BLOCKS: r = inflate_blocks(z->state->blocks, z, r); if (r == Z_DATA_ERROR) { z->state->mode = BAD; z->state->sub.marker = 0; /* can try inflateSync */ break; } if (r != Z_STREAM_END) return r; r = Z_OK; inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was); if (z->state->nowrap) { z->state->mode = DONE; break; } z->state->mode = CHECK4; case CHECK4: NEEDBYTE z->state->sub.check.need = (uLong)NEXTBYTE << 24; z->state->mode = CHECK3; case CHECK3: NEEDBYTE z->state->sub.check.need += (uLong)NEXTBYTE << 16; z->state->mode = CHECK2; case CHECK2: NEEDBYTE z->state->sub.check.need += (uLong)NEXTBYTE << 8; z->state->mode = CHECK1; case CHECK1: NEEDBYTE z->state->sub.check.need += (uLong)NEXTBYTE; if (z->state->sub.check.was != z->state->sub.check.need) { z->state->mode = BAD; z->msg = (char*)"incorrect data check"; z->state->sub.marker = 5; /* can't try inflateSync */ break; } Trace((stderr, "inflate: zlib check ok\n")); z->state->mode = DONE; case DONE: return Z_STREAM_END; case BAD: return Z_DATA_ERROR; default: return Z_STREAM_ERROR; } } int inflateSetDictionary(z, dictionary, dictLength) z_streamp z; const Bytef *dictionary; uInt dictLength; { uInt length = dictLength; if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0) return Z_STREAM_ERROR; if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR; z->adler = 1L; if (length >= ((uInt)1<state->wbits)) { length = (1<state->wbits)-1; dictionary += dictLength - length; } inflate_set_dictionary(z->state->blocks, dictionary, length); z->state->mode = BLOCKS; return Z_OK; } int inflateSync(z) z_streamp z; { uInt n; /* number of bytes to look at */ Bytef *p; /* pointer to bytes */ uInt m; /* number of marker bytes found in a row */ uLong r, w; /* temporaries to save total_in and total_out */ /* set up */ if (z == Z_NULL || z->state == Z_NULL) return Z_STREAM_ERROR; if (z->state->mode != BAD) { z->state->mode = BAD; z->state->sub.marker = 0; } if ((n = z->avail_in) == 0) return Z_BUF_ERROR; p = z->next_in; m = z->state->sub.marker; /* search */ while (n && m < 4) { if (*p == (Byte)(m < 2 ? 0 : 0xff)) m++; else if (*p) m = 0; else m = 4 - m; p++, n--; } /* restore */ z->total_in += p - z->next_in; z->next_in = p; z->avail_in = n; z->state->sub.marker = m; /* return no joy or set up to restart on a new block */ if (m != 4) return Z_DATA_ERROR; r = z->total_in; w = z->total_out; inflateReset(z); z->total_in = r; z->total_out = w; z->state->mode = BLOCKS; return Z_OK; } search */ while (n && m < 4) { if (*p == (Byte)(m < 2 ? 0 : 0xff)) m++; else if (*p) m = 0; else m = 4 - m; p++, n--; } /* restore */ z->total_in += usr.lib/libz/infutil.c 444 2000 51 3706 6650544251 10264 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)infutil.c 5.1 (Berkeley) 1/18/99 */ #include "zutil.h" #include "infblock.h" #include "inftrees.h" #include "infcodes.h" #include "infutil.h" struct inflate_codes_state {int dummy;}; /* for buggy compilers */ /* And'ing with mask[n] masks the lower n bits */ uInt inflate_mask[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff }; /* copy as much as possible from the sliding window to the output area */ int inflate_flush(s, z, r) inflate_blocks_statef *s; z_streamp z; int r; { uInt n; Bytef *p; Bytef *q; /* local copies of source and destination pointers */ p = z->next_out; q = s->read; /* compute number of bytes to copy as far as end of window */ n = (uInt)((q <= s->write ? s->write : s->end) - q); if (n > z->avail_out) n = z->avail_out; if (n && r == Z_BUF_ERROR) r = Z_OK; /* update counters */ z->avail_out -= n; z->total_out += n; /* update check information */ if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(s->check, q, n); /* copy as far as end of window */ zmemcpy(p, q, n); p += n; q += n; /* see if more to copy at beginning of window */ if (q == s->end) { /* wrap pointers */ q = s->window; if (s->write == s->end) s->write = s->window; /* compute bytes to copy */ n = (uInt)(s->write - q); if (n > z->avail_out) n = z->avail_out; if (n && r == Z_BUF_ERROR) r = Z_OK; /* update counters */ z->avail_out -= n; z->total_out += n; /* update check information */ if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(s->check, q, n); /* copy */ zmemcpy(p, q, n); p += n; q += n; } /* update pointers */ z->next_out = p; s->read = q; /* done */ return r; } = s->window; /* compute bytes to copy */ n = (uInusr.lib/libz/inftrees.c 444 2000 51 37563 6650544251 10461 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)inftrees.c 5.1 (Berkeley) 1/18/99 */ #include "zutil.h" #include "inftrees.h" char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ struct internal_state {int dummy;}; /* for buggy compilers */ /* simplify the use of the inflate_huft type with some defines */ #define base more.Base #define next more.Next #define exop word.what.Exop #define bits word.what.Bits local int huft_build OF(( uIntf *, /* code lengths in bits */ uInt, /* number of codes */ uInt, /* number of "simple" codes */ uIntf *, /* list of base values for non-simple codes */ uIntf *, /* list of extra bits for non-simple codes */ inflate_huft * FAR*,/* result: starting table */ uIntf *, /* maximum lookup bits (returns actual) */ z_streamp )); /* for zalloc function */ local voidpf falloc OF(( voidpf, /* opaque pointer (not used) */ uInt, /* number of items */ uInt)); /* size of item */ /* Tables for deflate from PKZIP's appnote.txt. */ local uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; /* actually lengths - 2; also see note #13 above about 258 */ local uInt cplext[31] = { /* Extra bits for literal codes 257..285 */ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */ local uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; local uInt cpdext[30] = { /* Extra bits for distance codes */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; /* Huffman code decoding is performed using a multi-level table lookup. The fastest way to decode is to simply build a lookup table whose size is determined by the longest code. However, the time it takes to build this table can also be a factor if the data being decoded is not very long. The most common codes are necessarily the shortest codes, so those codes dominate the decoding time, and hence the speed. The idea is you can have a shorter table that decodes the shorter, more probable codes, and then point to subsidiary tables for the longer codes. The time it costs to decode the longer codes is then traded against the time it takes to make longer tables. This results of this trade are in the variables lbits and dbits below. lbits is the number of bits the first level table for literal/ length codes can decode in one step, and dbits is the same thing for the distance codes. Subsequent tables are also less than or equal to those sizes. These values may be adjusted either when all of the codes are shorter than that, in which case the longest code length in bits is used, or when the shortest code is *longer* than the requested table size, in which case the length of the shortest code in bits is used. There are two different values for the two tables, since they code a different number of possibilities each. The literal/length table codes 286 possible values, or in a flat code, a little over eight bits. The distance table codes 30 possible values, or a little less than five bits, flat. The optimum values for speed end up being about one bit more than those, so lbits is 8+1 and dbits is 5+1. The optimum values may differ though from machine to machine, and possibly even between compilers. Your mileage may vary. */ /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ #define BMAX 15 /* maximum bit length of any code */ #define N_MAX 288 /* maximum number of codes in any set */ #ifdef DEBUG uInt inflate_hufts; #endif local int huft_build(b, n, s, d, e, t, m, zs) uIntf *b; /* code lengths in bits (all assumed <= BMAX) */ uInt n; /* number of codes (assumed <= N_MAX) */ uInt s; /* number of simple-valued codes (0..s-1) */ uIntf *d; /* list of base values for non-simple codes */ uIntf *e; /* list of extra bits for non-simple codes */ inflate_huft * FAR *t; /* result: starting table */ uIntf *m; /* maximum lookup bits, returns actual */ z_streamp zs; /* for zalloc function */ /* Given a list of code lengths and a maximum table size, make a set of tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR if the given code set is incomplete (the tables are still built in this case), Z_DATA_ERROR if the input is invalid (all zero length codes or an over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */ { uInt a; /* counter for codes of length k */ uInt c[BMAX+1]; /* bit length count table */ uInt f; /* i repeats in table every f entries */ int g; /* maximum code length */ int h; /* table level */ register uInt i; /* counter, current code */ register uInt j; /* counter */ register int k; /* number of bits in current code */ int l; /* bits per table (returned in m) */ register uIntf *p; /* pointer into c[], b[], or v[] */ inflate_huft *q; /* points to current table */ struct inflate_huft_s r; /* table entry for structure assignment */ inflate_huft *u[BMAX]; /* table stack */ uInt v[N_MAX]; /* values in order of bit length */ register int w; /* bits before this table == (l * h) */ uInt x[BMAX+1]; /* bit offsets, then code stack */ uIntf *xp; /* pointer into x */ int y; /* number of dummy codes added */ uInt z; /* number of entries in current table */ /* Generate counts for each bit length */ p = c; #define C0 *p++ = 0; #define C2 C0 C0 C0 C0 #define C4 C2 C2 C2 C2 C4 /* clear c[]--assume BMAX+1 is 16 */ p = b; i = n; do { c[*p++]++; /* assume all entries <= BMAX */ } while (--i); if (c[0] == n) /* null input--all zero length codes */ { *t = (inflate_huft *)Z_NULL; *m = 0; return Z_OK; } /* Find minimum and maximum length, bound *m by those */ l = *m; for (j = 1; j <= BMAX; j++) if (c[j]) break; k = j; /* minimum code length */ if ((uInt)l < j) l = j; for (i = BMAX; i; i--) if (c[i]) break; g = i; /* maximum code length */ if ((uInt)l > i) l = i; *m = l; /* Adjust last length count to fill out codes, if needed */ for (y = 1 << j; j < i; j++, y <<= 1) if ((y -= c[j]) < 0) return Z_DATA_ERROR; if ((y -= c[i]) < 0) return Z_DATA_ERROR; c[i] += y; /* Generate starting offsets into the value table for each length */ x[1] = j = 0; p = c + 1; xp = x + 2; while (--i) { /* note that i == g from above */ *xp++ = (j += *p++); } /* Make a table of values in order of bit lengths */ p = b; i = 0; do { if ((j = *p++) != 0) v[x[j]++] = i; } while (++i < n); /* Generate the Huffman codes and for each, make the table entries */ x[0] = i = 0; /* first Huffman code is zero */ p = v; /* grab values in bit order */ h = -1; /* no tables yet--level -1 */ w = -l; /* bits decoded == (l * h) */ u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ q = (inflate_huft *)Z_NULL; /* ditto */ z = 0; /* ditto */ /* go through the bit lengths (k already is bits in shortest code) */ for (; k <= g; k++) { a = c[k]; while (a--) { /* here i is the Huffman code of length k bits for value *p */ /* make tables up to required level */ while (k > w + l) { h++; w += l; /* previous table always l bits */ /* compute minimum size table less than or equal to l bits */ z = g - w; z = z > (uInt)l ? l : z; /* table size upper limit */ if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ { /* too few codes for k-w bit table */ f -= a + 1; /* deduct codes from patterns left */ xp = c + k; if (j < z) while (++j < z) /* try smaller tables up to z bits */ { if ((f <<= 1) <= *++xp) break; /* enough codes to use up j bits */ f -= *xp; /* else deduct codes from patterns */ } } z = 1 << j; /* table entries for j-bit table */ /* allocate and link in new table */ if ((q = (inflate_huft *)ZALLOC (zs,z + 1,sizeof(inflate_huft))) == Z_NULL) { if (h) inflate_trees_free(u[0], zs); return Z_MEM_ERROR; /* not enough memory */ } #ifdef DEBUG inflate_hufts += z + 1; #endif *t = q + 1; /* link to list for huft_free() */ *(t = &(q->next)) = Z_NULL; u[h] = ++q; /* table starts after link */ /* connect to last table, if there is one */ if (h) { x[h] = i; /* save pattern for backing up */ r.bits = (Byte)l; /* bits to dump before this table */ r.exop = (Byte)j; /* bits in this table */ r.next = q; /* pointer to this table */ j = i >> (w - l); /* (get around Turbo C bug) */ u[h-1][j] = r; /* connect to last table */ } } /* set up table entry in r */ r.bits = (Byte)(k - w); if (p >= v + n) r.exop = 128 + 64; /* out of values--invalid code */ else if (*p < s) { r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */ r.base = *p++; /* simple code is just the value */ } else { r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */ r.base = d[*p++ - s]; } /* fill code-like entries with r */ f = 1 << (k - w); for (j = i >> w; j < z; j += f) q[j] = r; /* backwards increment the k-bit code i */ for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j; i ^= j; /* backup over finished tables */ while ((i & ((1 << w) - 1)) != x[h]) { h--; /* don't need to update q */ w -= l; } } } /* Return Z_BUF_ERROR if we were given an incomplete table */ return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; } int inflate_trees_bits(c, bb, tb, z) uIntf *c; /* 19 code lengths */ uIntf *bb; /* bits tree desired/actual depth */ inflate_huft * FAR *tb; /* bits tree result */ z_streamp z; /* for zfree function */ { int r; r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z); if (r == Z_DATA_ERROR) z->msg = (char*)"oversubscribed dynamic bit lengths tree"; else if (r == Z_BUF_ERROR) { inflate_trees_free(*tb, z); z->msg = (char*)"incomplete dynamic bit lengths tree"; r = Z_DATA_ERROR; } return r; } int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z) uInt nl; /* number of literal/length codes */ uInt nd; /* number of distance codes */ uIntf *c; /* that many (total) code lengths */ uIntf *bl; /* literal desired/actual bit depth */ uIntf *bd; /* distance desired/actual bit depth */ inflate_huft * FAR *tl; /* literal/length tree result */ inflate_huft * FAR *td; /* distance tree result */ z_streamp z; /* for zfree function */ { int r; /* build literal/length tree */ if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK) { if (r == Z_DATA_ERROR) z->msg = (char*)"oversubscribed literal/length tree"; else if (r == Z_BUF_ERROR) { inflate_trees_free(*tl, z); z->msg = (char*)"incomplete literal/length tree"; r = Z_DATA_ERROR; } return r; } /* build distance tree */ if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK) { if (r == Z_DATA_ERROR) z->msg = (char*)"oversubscribed literal/length tree"; else if (r == Z_BUF_ERROR) { #ifdef PKZIP_BUG_WORKAROUND r = Z_OK; } #else inflate_trees_free(*td, z); z->msg = (char*)"incomplete literal/length tree"; r = Z_DATA_ERROR; } inflate_trees_free(*tl, z); return r; #endif } /* done */ return Z_OK; } /* build fixed tables only once--keep them here */ local int fixed_built = 0; #define FIXEDH 530 /* number of hufts used by fixed tables */ local inflate_huft fixed_mem[FIXEDH]; local uInt fixed_bl; local uInt fixed_bd; local inflate_huft *fixed_tl; local inflate_huft *fixed_td; local voidpf falloc(q, n, s) voidpf q; /* opaque pointer */ uInt n; /* number of items */ uInt s; /* size of item */ { Assert(s == sizeof(inflate_huft) && n <= *(intf *)q, "inflate_trees falloc overflow"); *(intf *)q -= n+s-s; /* s-s to avoid warning */ return (voidpf)(fixed_mem + *(intf *)q); } int inflate_trees_fixed(bl, bd, tl, td) uIntf *bl; /* literal desired/actual bit depth */ uIntf *bd; /* distance desired/actual bit depth */ inflate_huft * FAR *tl; /* literal/length tree result */ inflate_huft * FAR *td; /* distance tree result */ { /* build fixed tables if not already (multiple overlapped executions ok) */ if (!fixed_built) { int k; /* temporary variable */ unsigned c[288]; /* length list for huft_build */ z_stream z; /* for falloc function */ int f = FIXEDH; /* number of hufts left in fixed_mem */ /* set up fake z_stream for memory routines */ z.zalloc = falloc; z.zfree = Z_NULL; z.opaque = (voidpf)&f; /* literal table */ for (k = 0; k < 144; k++) c[k] = 8; for (; k < 256; k++) c[k] = 9; for (; k < 280; k++) c[k] = 7; for (; k < 288; k++) c[k] = 8; fixed_bl = 7; huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z); /* distance table */ for (k = 0; k < 30; k++) c[k] = 5; fixed_bd = 5; huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z); /* done */ Assert(f == 0, "invalid build of fixed tables"); fixed_built = 1; } *bl = fixed_bl; *bd = fixed_bd; *tl = fixed_tl; *td = fixed_td; return Z_OK; } int inflate_trees_free(t, z) inflate_huft *t; /* table to free */ z_streamp z; /* for zfree function */ /* Free the malloc'ed tables built by huft_build(), which makes a linked list of the tables it made, with the links in a dummy first entry of each table. */ { register inflate_huft *p, *q, *r; /* Reverse linked list */ p = Z_NULL; q = t; while (q != Z_NULL) { r = (q - 1)->next; (q - 1)->next = p; p = q; q = r; } /* Go through linked list, freeing from the malloced (t[-1]) address. */ while (p != Z_NULL) { q = (--p)->next; ZFREE(z,p); p = q; } return Z_OK; } e malloc'ed tables built by huft_build(), which makes a linked list of the tables it made, with the links in a dummy first entry of eacusr.lib/libz/inftrees.h 444 2000 51 4550 6650544251 10434 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)inftrees.h 5.1 (Berkeley) 1/18/99 */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* Huffman code lookup table entry--this entry is four bytes for machines that have 16-bit pointers (e.g. PC's in the small or medium model). */ typedef struct inflate_huft_s FAR inflate_huft; struct inflate_huft_s { union { struct { Byte Exop; /* number of extra bits or operation */ Byte Bits; /* number of bits in this code or subcode */ } what; Bytef *pad; /* pad structure to a power of 2 (4 bytes for */ } word; /* 16-bit, 8 bytes for 32-bit machines) */ union { uInt Base; /* literal, length base, or distance base */ inflate_huft *Next; /* pointer to next level of table */ } more; }; #ifdef DEBUG extern uInt inflate_hufts; #endif extern int inflate_trees_bits OF(( uIntf *, /* 19 code lengths */ uIntf *, /* bits tree desired/actual depth */ inflate_huft * FAR *, /* bits tree result */ z_streamp )); /* for zalloc, zfree functions */ extern int inflate_trees_dynamic OF(( uInt, /* number of literal/length codes */ uInt, /* number of distance codes */ uIntf *, /* that many (total) code lengths */ uIntf *, /* literal desired/actual bit depth */ uIntf *, /* distance desired/actual bit depth */ inflate_huft * FAR *, /* literal/length tree result */ inflate_huft * FAR *, /* distance tree result */ z_streamp )); /* for zalloc, zfree functions */ extern int inflate_trees_fixed OF(( uIntf *, /* literal desired/actual bit depth */ uIntf *, /* distance desired/actual bit depth */ inflate_huft * FAR *, /* literal/length tree result */ inflate_huft * FAR *)); /* distance tree result */ extern int inflate_trees_free OF(( inflate_huft *, /* tables to free */ z_streamp )); /* for zfree function */ _streamp )); /* for zalloc, zfree functions */ extern int inflate_trees_fixed OF(( uIntf *, /* literal desired/actusr.lib/libz/infutil.h 444 2000 51 7155 6650544251 10273 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)infutil.h 5.1 (Berkeley) 1/18/99 */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ #ifndef _INFUTIL_H #define _INFUTIL_H typedef enum { TYPE, /* get type bits (3, including end bit) */ LENS, /* get lengths for stored */ STORED, /* processing stored block */ TABLE, /* get table lengths */ BTREE, /* get bit lengths tree for a dynamic block */ DTREE, /* get length, distance trees for a dynamic block */ CODES, /* processing fixed or dynamic block */ DRY, /* output remaining window bytes */ DONE, /* finished last block, done */ BAD} /* got a data error--stuck here */ inflate_block_mode; /* inflate blocks semi-private state */ struct inflate_blocks_state { /* mode */ inflate_block_mode mode; /* current inflate_block mode */ /* mode dependent information */ union { uInt left; /* if STORED, bytes left to copy */ struct { uInt table; /* table lengths (14 bits) */ uInt index; /* index into blens (or border) */ uIntf *blens; /* bit lengths of codes */ uInt bb; /* bit length tree depth */ inflate_huft *tb; /* bit length decoding tree */ } trees; /* if DTREE, decoding info for trees */ struct { inflate_huft *tl; inflate_huft *td; /* trees to free */ inflate_codes_statef *codes; } decode; /* if CODES, current state */ } sub; /* submode */ uInt last; /* true if this block is the last block */ /* mode independent information */ uInt bitk; /* bits in bit buffer */ uLong bitb; /* bit buffer */ Bytef *window; /* sliding window */ Bytef *end; /* one byte after sliding window */ Bytef *read; /* window read pointer */ Bytef *write; /* window write pointer */ check_func checkfn; /* check function */ uLong check; /* check on output */ }; /* defines for inflate input/output */ /* update pointers and return */ #define UPDBITS {s->bitb=b;s->bitk=k;} #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;} #define UPDOUT {s->write=q;} #define UPDATE {UPDBITS UPDIN UPDOUT} #define LEAVE {UPDATE return inflate_flush(s,z,r);} /* get bytes and bits */ #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;} #define NEEDBYTE {if(n)r=Z_OK;else LEAVE} #define NEXTBYTE (n--,*p++) #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<>=(j);k-=(j);} /* output bytes */ #define WAVAIL (uInt)(qread?s->read-q-1:s->end-q) #define LOADOUT {q=s->write;m=(uInt)WAVAIL;} #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}} #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT} #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;} #define OUTBYTE(a) {*q++=(Byte)(a);m--;} /* load local pointers */ #define LOAD {LOADIN LOADOUT} /* masks for lower bits (size given to avoid silly warnings with Visual C++) */ extern uInt inflate_mask[17]; /* copy as much as possible from the sliding window to the output area */ extern int inflate_flush OF(( inflate_blocks_statef *, z_streamp , int)); struct internal_state {int dummy;}; /* for buggy compilers */ #endif DOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;} #define OUTBYTE(a) {*q++=(Byte)(a);m--;} /* load local pointers */ #define LOAD {LOADIN LOADOUT} /* masks for lower bits (size given to avoid silly warnings with Visual C++) */ extern uInt inflate_mask[17]; /* copy as much as possible from the sliding window to the output area */ extern int inflate_flush OF(( inflate_blocks_statusr.lib/libz/trees.c 444 2000 51 122017 6650544252 7772 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)trees.c 5.1 (Berkeley) 1/18/99 */ /* * ALGORITHM * * The "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in a compressed form which is itself * a Huffman encoding of the lengths of all the code strings (in * ascending order by source values). The actual code strings are * reconstructed from the lengths in the inflate process, as described * in the deflate specification. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. */ /* $Id: trees.c,v 1.1.1.1 1997/03/19 15:06:40 kivinen Exp $ */ #include "deflate.h" #ifdef DEBUG # include #endif /* =========================================================================== * Constants */ #define MAX_BL_BITS 7 /* Bit length codes must not exceed MAX_BL_BITS bits */ #define END_BLOCK 256 /* end of block literal code */ #define REP_3_6 16 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_11_138 18 /* repeat a zero length 11-138 times (7 bits of repeat count) */ local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local int extra_dbits[D_CODES] /* extra bits for each distance code */ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local int extra_blbits[BL_CODES]/* extra bits for each bit length code */ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; local uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ #define Buf_size (8 * 2*sizeof(char)) /* Number of bits used within bi_buf. (bi_buf might be implemented on * more than 16 bits on some systems.) */ /* =========================================================================== * Local data. These are initialized only once. */ local ct_data static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ local ct_data static_dtree[D_CODES]; /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ local uch dist_code[512]; /* distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ local uch length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local int base_length[LENGTH_CODES]; /* First normalized length for each code (0 = MIN_MATCH) */ local int base_dist[D_CODES]; /* First normalized distance for each code (0 = distance of 1) */ struct static_tree_desc_s { ct_data *static_tree; /* static tree or NULL */ intf *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ }; local static_tree_desc static_l_desc = {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; local static_tree_desc static_d_desc = {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; local static_tree_desc static_bl_desc = {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /* =========================================================================== * Local (static) routines in this file. */ local void tr_static_init OF((void)); local void init_block OF((deflate_state *s)); local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); local void build_tree OF((deflate_state *s, tree_desc *desc)); local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); local int build_bl_tree OF((deflate_state *s)); local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, int blcodes)); local void compress_block OF((deflate_state *s, ct_data *ltree, ct_data *dtree)); local void set_data_type OF((deflate_state *s)); local unsigned bi_reverse OF((unsigned value, int length)); local void bi_windup OF((deflate_state *s)); local void bi_flush OF((deflate_state *s)); local void copy_block OF((deflate_state *s, charf *buf, unsigned len, int header)); #ifndef DEBUG # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* DEBUG */ # define send_code(s, c, tree) \ { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(s, tree[c].Code, tree[c].Len); } #endif #define d_code(dist) \ ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) /* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. dist_code[256] and dist_code[257] are never * used. */ /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ #define put_short(s, w) { \ put_byte(s, (uch)((w) & 0xff)); \ put_byte(s, (uch)((ush)(w) >> 8)); \ } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ #ifdef DEBUG local void send_bits OF((deflate_state *s, int value, int length)); local void send_bits(s, value, length) deflate_state *s; int value; /* value to send */ int length; /* number of bits */ { Tracevv((stderr," l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (ulg)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (value << s->bi_valid); put_short(s, s->bi_buf); s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= value << s->bi_valid; s->bi_valid += length; } } #else /* !DEBUG */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ int val = value;\ s->bi_buf |= (val << s->bi_valid);\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ s->bi_valid += len - Buf_size;\ } else {\ s->bi_buf |= (value) << s->bi_valid;\ s->bi_valid += len;\ }\ } #endif /* DEBUG */ #define MAX(a,b) (a >= b ? a : b) /* the arguments must not have side effects */ /* =========================================================================== * Initialize the various 'constant' tables. In a multi-threaded environment, * this function may be called by two threads concurrently, but this is * harmless since both invocations do exactly the same thing. */ local void tr_static_init() { static int static_init_done = 0; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1< dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bi_reverse((unsigned)n, 5); } static_init_done = 1; } /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ void _tr_init(s) deflate_state *s; { tr_static_init(); s->compressed_len = 0L; s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; s->last_eob_len = 8; /* enough lookahead for inflate */ #ifdef DEBUG s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Initialize a new block. */ local void init_block(s) deflate_state *s; { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->last_lit = s->matches = 0; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ {\ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ local void pqdownheap(s, tree, k) deflate_state *s; ct_data *tree; /* the tree to restore */ int k; /* node to move down */ { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ local void gen_bitlen(s, desc) deflate_state *s; tree_desc *desc; /* the tree descriptor */ { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; ct_data *stree = desc->stat_desc->static_tree; intf *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max+1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; s->opt_len += (ulg)f * (bits + xbits); if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if (tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ local void gen_codes (tree, max_code, bl_count) ct_data *tree; /* the tree to decorate */ int max_code; /* largest code with non zero frequency */ ushf *bl_count; /* number of codes at each bit length */ { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<dyn_tree; ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data *)tree, max_code, s->bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ local void scan_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (ush)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { s->bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) s->bl_tree[curlen].Freq++; s->bl_tree[REP_3_6].Freq++; } else if (count <= 10) { s->bl_tree[REPZ_3_10].Freq++; } else { s->bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ local void send_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s->bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(s, curlen, s->bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); } else { send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ local int build_bl_tree(s) deflate_state *s; { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); /* Build the bit length tree: */ build_tree(s, (tree_desc *)(&(s->bl_desc))); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ s->opt_len += 3*(max_blindex+1) + 5+5+4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees(s, lcodes, dcodes, blcodes) deflate_state *s; int lcodes, dcodes, blcodes; /* number of codes for each tree */ { int rank; /* index in bl_order */ Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes-1, 5); send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Send a stored block */ void _tr_stored_block(s, buf, stored_len, eof) deflate_state *s; charf *buf; /* input block */ ulg stored_len; /* length of input block */ int eof; /* true if this is the last block for a file */ { send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; s->compressed_len += (stored_len + 4) << 3; copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. * The current inflate code requires 9 bits of lookahead. If the * last two codes for the previous block (real code plus EOB) were coded * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode * the last real code. In this case we send two empty static blocks instead * of one. (There are no problems if the previous block is stored or fixed.) * To simplify the code, we assume the worst case of last real code encoded * on one bit only. */ void _tr_align(s) deflate_state *s; { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ bi_flush(s); /* Of the 10 bits for the empty block, we have already sent * (10 - bi_valid) bits. The lookahead for the last real code (before * the EOB of the previous block) was thus at least one plus the length * of the EOB plus what we have just sent of the empty static block. */ if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); s->compressed_len += 10L; bi_flush(s); } s->last_eob_len = 7; } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. This function * returns the total compressed length for the file so far. */ ulg _tr_flush_block(s, buf, stored_len, eof) deflate_state *s; charf *buf; /* input block, or NULL if too old */ ulg stored_len; /* length of input block */ int eof; /* true if this is the last block for a file */ { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s->level > 0) { /* Check if the file is ascii or binary */ if (s->data_type == Z_UNKNOWN) set_data_type(s); /* Construct the literal and distance trees */ build_tree(s, (tree_desc *)(&(s->l_desc))); Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); build_tree(s, (tree_desc *)(&(s->d_desc))); Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute first the block length in bytes*/ opt_lenb = (s->opt_len+3+7)>>3; static_lenb = (s->static_len+3+7)>>3; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->last_lit)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } /* If compression failed and this is the first and last block, * and if the .zip file can be seeked (to rewrite the local header), * the whole file is transformed into a stored file: */ #ifdef STORED_FILE_OK # ifdef FORCE_STORED_FILE if (eof && s->compressed_len == 0L) { /* force stored file */ # else if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { # endif /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ if (buf == (charf*)0) error ("block vanished"); copy_block(buf, (unsigned)stored_len, 0); /* without header */ s->compressed_len = stored_len << 3; s->method = STORED; } else #endif /* STORED_FILE_OK */ #ifdef FORCE_STORED if (buf != (char*)0) { /* force stored block */ #else if (stored_len+4 <= opt_lenb && buf != (char*)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, eof); #ifdef FORCE_STATIC } else if (static_lenb >= 0) { /* force static trees */ #else } else if (static_lenb == opt_lenb) { #endif send_bits(s, (STATIC_TREES<<1)+eof, 3); compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); s->compressed_len += 3 + s->static_len; } else { send_bits(s, (DYN_TREES<<1)+eof, 3); send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1); compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); s->compressed_len += 3 + s->opt_len; } Assert (s->compressed_len == s->bits_sent, "bad compressed size"); init_block(s); if (eof) { bi_windup(s); s->compressed_len += 7; /* align on byte boundary */ } Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*eof)); return s->compressed_len >> 3; } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int _tr_tally (s, dist, lc) deflate_state *s; unsigned dist; /* distance of matched string */ unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { s->d_buf[s->last_lit] = (ush)dist; s->l_buf[s->last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ s->dyn_ltree[lc].Freq++; } else { s->matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((ush)dist < (ush)MAX_DIST(s) && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; s->dyn_dtree[d_code(dist)].Freq++; } /* Try to guess if it is profitable to stop the current block here */ if (s->level > 2 && (s->last_lit & 0xfff) == 0) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)s->last_lit*8L; ulg in_length = (ulg)((long)s->strstart - s->block_start); int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)s->dyn_dtree[dcode].Freq * (5L+extra_dbits[dcode]); } out_length >>= 3; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", s->last_lit, in_length, out_length, 100L - out_length*100L/in_length)); if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; } return (s->last_lit == s->lit_bufsize-1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block(s, ltree, dtree) deflate_state *s; ct_data *ltree; /* literal tree */ ct_data *dtree; /* distance tree */ { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (s->last_lit != 0) do { dist = s->d_buf[lx]; lc = s->l_buf[lx++]; if (dist == 0) { send_code(s, lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = length_code[lc]; send_code(s, code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); } while (lx < s->last_lit); send_code(s, END_BLOCK, ltree); s->last_eob_len = ltree[END_BLOCK].Len; } /* =========================================================================== * Set the data type to ASCII or BINARY, using a crude approximation: * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. * IN assertion: the fields freq of dyn_ltree are set and the total of all * frequencies does not exceed 64K (to fit in an int on 16 bit machines). */ local void set_data_type(s) deflate_state *s; { int n = 0; unsigned ascii_freq = 0; unsigned bin_freq = 0; while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ local unsigned bi_reverse(code, len) unsigned code; /* the value to invert */ int len; /* its bit length */ { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ local void bi_flush(s) deflate_state *s; { if (s->bi_valid == 16) { put_short(s, s->bi_buf); s->bi_buf = 0; s->bi_valid = 0; } else if (s->bi_valid >= 8) { put_byte(s, (Byte)s->bi_buf); s->bi_buf >>= 8; s->bi_valid -= 8; } } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ local void bi_windup(s) deflate_state *s; { if (s->bi_valid > 8) { put_short(s, s->bi_buf); } else if (s->bi_valid > 0) { put_byte(s, (Byte)s->bi_buf); } s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->bits_sent = (s->bits_sent+7) & ~7; #endif } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ local void copy_block(s, buf, len, header) deflate_state *s; charf *buf; /* the input data */ unsigned len; /* its length */ int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ s->last_eob_len = 8; /* enough lookahead for inflate */ if (header) { put_short(s, (ush)len); put_short(s, (ush)~len); #ifdef DEBUG s->bits_sent += 2*16; #endif } #ifdef DEBUG s->bits_sent += (ulg)len<<3; #endif while (len--) { put_byte(s, *buf++); } } charf *buf; /* the input data */ unsigned len; /* its length */ int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ s->last_eob_len = 8; /* enough lookahead for inflate */ if (header) { put_short(s, (ush)len); put_short(s, (ush)~len); #ifdef DEBUG s->bits_sent += 2*16; #endif } #ifdef DEBUG s->bits_sent += (ulg)len<<3; #endif while (len--) { put_byte(s, *busr.lib/libz/uncompr.c 444 2000 51 3721 6650544252 10273 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)uncompr.c 5.1 (Berkeley) 1/18/99 */ /* $Id: uncompr.c,v 1.1.1.1 1997/03/19 15:06:40 kivinen Exp $ */ #include /* =========================================================================== Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the compressed buffer. This function can be used to decompress a whole file at once if the input file is mmap'ed. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted. */ int uncompress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { z_stream stream; int err; stream.next_in = (Bytef*)source; stream.avail_in = (uInt)sourceLen; /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; err = inflateInit(&stream); if (err != Z_OK) return err; err = inflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { inflateEnd(&stream); return err; } *destLen = stream.total_out; err = inflateEnd(&stream); return err; } n != sourceLen) return Z_BUF_ERROR; streamusr.lib/libz/zutil.c 444 2000 51 11602 6650544252 7774 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)zutil.c 5.1 (Berkeley) 1/18/99 */ /* $Id: zutil.c,v 1.1.1.1 1997/03/19 15:06:41 kivinen Exp $ */ #include #include "zutil.h" struct internal_state {int dummy;}; /* for buggy compilers */ #ifndef STDC extern void exit OF((int)); #endif const char *z_errmsg[10] = { "need dictionary", /* Z_NEED_DICT 2 */ "stream end", /* Z_STREAM_END 1 */ "", /* Z_OK 0 */ "file error", /* Z_ERRNO (-1) */ "stream error", /* Z_STREAM_ERROR (-2) */ "data error", /* Z_DATA_ERROR (-3) */ "insufficient memory", /* Z_MEM_ERROR (-4) */ "buffer error", /* Z_BUF_ERROR (-5) */ "incompatible version",/* Z_VERSION_ERROR (-6) */ ""}; const char *zlibVersion() { return ZLIB_VERSION; } #ifdef DEBUG void z_error (m) char *m; { fprintf(stderr, "%s\n", m); exit(1); } #endif #ifndef HAVE_MEMCPY void zmemcpy(dest, source, len) Bytef* dest; Bytef* source; uInt len; { if (len == 0) return; do { *dest++ = *source++; /* ??? to be unrolled */ } while (--len != 0); } int zmemcmp(s1, s2, len) Bytef* s1; Bytef* s2; uInt len; { uInt j; for (j = 0; j < len; j++) { if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; } return 0; } void zmemzero(dest, len) Bytef* dest; uInt len; { if (len == 0) return; do { *dest++ = 0; /* ??? to be unrolled */ } while (--len != 0); } #endif #ifdef __TURBOC__ #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__) /* Small and medium model in Turbo C are for now limited to near allocation * with reduced MAX_WBITS and MAX_MEM_LEVEL */ # define MY_ZCALLOC /* Turbo C malloc() does not allow dynamic allocation of 64K bytes * and farmalloc(64K) returns a pointer with an offset of 8, so we * must fix the pointer. Warning: the pointer must be put back to its * original form in order to free it, use zcfree(). */ #define MAX_PTR 10 /* 10*64K = 640K */ local int next_ptr = 0; typedef struct ptr_table_s { voidpf org_ptr; voidpf new_ptr; } ptr_table; local ptr_table table[MAX_PTR]; /* This table is used to remember the original form of pointers * to large buffers (64K). Such pointers are normalized with a zero offset. * Since MSDOS is not a preemptive multitasking OS, this table is not * protected from concurrent access. This hack doesn't work anyway on * a protected system like OS/2. Use Microsoft C instead. */ voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) { voidpf buf = opaque; /* just to make some compilers happy */ ulg bsize = (ulg)items*size; /* If we allocate less than 65520 bytes, we assume that farmalloc * will return a usable pointer which doesn't have to be normalized. */ if (bsize < 65520L) { buf = farmalloc(bsize); if (*(ush*)&buf != 0) return buf; } else { buf = farmalloc(bsize + 16L); } if (buf == NULL || next_ptr >= MAX_PTR) return NULL; table[next_ptr].org_ptr = buf; /* Normalize the pointer to seg:0 */ *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; *(ush*)&buf = 0; table[next_ptr++].new_ptr = buf; return buf; } void zcfree (voidpf opaque, voidpf ptr) { int n; if (*(ush*)&ptr != 0) { /* object < 64K */ farfree(ptr); return; } /* Find the original pointer */ for (n = 0; n < next_ptr; n++) { if (ptr != table[n].new_ptr) continue; farfree(table[n].org_ptr); while (++n < next_ptr) { table[n-1] = table[n]; } next_ptr--; return; } ptr = opaque; /* just to make some compilers happy */ Assert(0, "zcfree: ptr not found"); } #endif #endif /* __TURBOC__ */ #if defined(M_I86) && !defined(__32BIT__) /* Microsoft C in 16-bit mode */ # define MY_ZCALLOC #if (!defined(_MSC_VER) || (_MSC_VER < 600)) # define _halloc halloc # define _hfree hfree #endif voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) { if (opaque) opaque = 0; /* to make compiler happy */ return _halloc((long)items, size); } void zcfree (voidpf opaque, voidpf ptr) { if (opaque) opaque = 0; /* to make compiler happy */ _hfree(ptr); } #endif /* MSC */ #ifndef MY_ZCALLOC /* Any system without a special alloc function */ #ifndef STDC extern voidp calloc OF((uInt items, uInt size)); extern void free OF((voidpf ptr)); #endif voidpf zcalloc (opaque, items, size) voidpf opaque; unsigned items; unsigned size; { if (opaque) items += size - size; /* make compiler happy */ return (voidpf)calloc(items, size); } void zcfree (opaque, ptr) voidpf opaque; voidpf ptr; { free(ptr); if (opaque) return; /* make compiler happy */ } #endif /* MY_ZCALLOC */ stem without a special alloc function */ #ifndef STDC extern voidp calloc OF((uInt items, uInt size)); extern void free usr.lib/libz/zutil.h 444 2000 51 6263 6650544253 7771 /* * This code has been derived from Jean-loup Gailly's zlib. * It has been integrated into Berkeley UNIX by Michael Sokolov * * @(#)zutil.h 5.1 (Berkeley) 1/18/99 */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* $Id: zutil.h,v 1.1.1.1 1997/03/19 15:06:41 kivinen Exp $ */ #ifndef _Z_UTIL_H #define _Z_UTIL_H #include extern int errno; #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ typedef unsigned char uch; typedef uch FAR uchf; typedef unsigned short ush; typedef ush FAR ushf; typedef unsigned long ulg; extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */ /* (size given to avoid silly warnings with Visual C++) */ #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = (char*)ERR_MSG(err), (err)) /* To be used only when the state is known to be valid */ /* common constants */ #ifndef DEF_WBITS # define DEF_WBITS MAX_WBITS #endif /* default windowBits for decompression. MAX_WBITS is for compression only */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default memLevel */ #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 /* The three kinds of block type */ #define MIN_MATCH 3 #define MAX_MATCH 258 /* The minimum and maximum match lengths */ #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ #define OS_CODE 0x03 /* UNIX */ #ifndef FOPEN # define FOPEN(name, mode) fopen((name), (mode)) #endif /* functions */ extern char *sys_errlist[]; extern int sys_nerr; #define zstrerror(errnum) ((errnum) > sys_nerr ? "" : sys_errlist[(errnum)]) #define HAVE_MEMCPY #ifdef HAVE_MEMCPY # define zmemcpy memcpy # define zmemcmp memcmp # define zmemzero(dest, len) memset(dest, 0, len) #else extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len)); extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len)); extern void zmemzero OF((Bytef* dest, uInt len)); #endif /* Diagnostic functions */ #ifdef DEBUG # include # ifndef verbose # define verbose 0 # endif extern void z_error OF((char *m)); # define Assert(cond,msg) {if(!(cond)) z_error(msg);} # define Trace(x) fprintf x # define Tracev(x) {if (verbose) fprintf x ;} # define Tracevv(x) {if (verbose>1) fprintf x ;} # define Tracec(c,x) {if (verbose && (c)) fprintf x ;} # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;} #else # define Assert(cond,msg) # define Trace(x) # define Tracev(x) # define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len)); voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); void zcfree OF((voidpf opaque, voidpf ptr)); #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} #endif /* _Z_UTIL_H */ define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len)); voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); void zcfree OF((voidpf opaque, voidpf ptr)); #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((ucb/compress/ 755 2000 51 0 6761567571 6460 ucb/compress/compress.c 444 2000 51 124223 6651227170 10570 #ifndef lint static char sccsid[] = "@(#)compress.c @(#)compress.c 5.10 (Berkeley) 1/19/99"; #endif not lint /* * Compress - data compression program */ #define min(a,b) ((a>b) ? b : a) /* * machine variants which require cc -Dmachine: pdp11, z8000, pcxt */ /* * Set USERMEM to the maximum amount of physical user memory available * in bytes. USERMEM is used to determine the maximum BITS that can be used * for compression. * * SACREDMEM is the amount of physical memory saved for others; compress * will hog the rest. */ #ifndef SACREDMEM #define SACREDMEM 0 #endif #ifndef USERMEM # define USERMEM 450000 /* default user memory */ #endif #ifdef interdata /* (Perkin-Elmer) */ #define SIGNED_COMPARE_SLOW /* signed compare is slower than unsigned */ #endif #ifdef pdp11 # define BITS 12 /* max bits/code for 16-bit machine */ # define NO_UCHAR /* also if "unsigned char" functions as signed char */ # undef USERMEM #endif /* pdp11 */ /* don't forget to compile with -i */ #ifdef z8000 # define BITS 12 # undef vax /* weird preprocessor */ # undef USERMEM #endif /* z8000 */ #ifdef pcxt # define BITS 12 # undef USERMEM #endif /* pcxt */ #ifdef USERMEM # if USERMEM >= (433484+SACREDMEM) # define PBITS 16 # else # if USERMEM >= (229600+SACREDMEM) # define PBITS 15 # else # if USERMEM >= (127536+SACREDMEM) # define PBITS 14 # else # if USERMEM >= (73464+SACREDMEM) # define PBITS 13 # else # define PBITS 12 # endif # endif # endif # endif # undef USERMEM #endif /* USERMEM */ #ifdef PBITS /* Preferred BITS for this memory size */ # ifndef BITS # define BITS PBITS # endif BITS #endif /* PBITS */ #if BITS == 16 # define HSIZE 69001 /* 95% occupancy */ #endif #if BITS == 15 # define HSIZE 35023 /* 94% occupancy */ #endif #if BITS == 14 # define HSIZE 18013 /* 91% occupancy */ #endif #if BITS == 13 # define HSIZE 9001 /* 91% occupancy */ #endif #if BITS <= 12 # define HSIZE 5003 /* 80% occupancy */ #endif #ifdef M_XENIX /* Stupid compiler can't handle arrays with */ # if BITS == 16 /* more than 65535 bytes - so we fake it */ # define XENIX_16 # else # if BITS > 13 /* Code only handles BITS = 12, 13, or 16 */ # define BITS 13 # endif # endif #endif /* * a code_int must be able to hold 2**BITS values of type int, and also -1 */ #if BITS > 15 typedef long int code_int; #else typedef int code_int; #endif #ifdef SIGNED_COMPARE_SLOW typedef unsigned long int count_int; typedef unsigned short int count_short; #else typedef long int count_int; #endif #ifdef NO_UCHAR typedef char char_type; #else typedef unsigned char char_type; #endif /* UCHAR */ char_type magic_header[] = { "\037\235" }; /* 1F 9D */ char_type magic_strong[] = { "\037\241" }; /* 1F A1 */ /* Defines for third byte of header */ #define BIT_MASK 0x1f #define BLOCK_MASK 0x80 /* Masks 0x40 and 0x20 are free. I think 0x20 should mean that there is a fourth header byte (for expansion). */ #define INIT_BITS 9 /* initial number of bits/code */ /* * compress.c - File compression ala IEEE Computer, June 1984. * * Authors: Spencer W. Thomas (decvax!utah-cs!thomas) * Jim McKie (decvax!mcvax!jim) * Steve Davies (decvax!vax135!petsd!peora!srd) * Ken Turkowski (decvax!decwrl!turtlevax!ken) * James A. Woods (decvax!ihnp4!ames!jaw) * Joe Orost (decvax!vax135!petsd!joe) * * $Header: compress.c,v 4.0 85/07/30 12:50:00 joe Release $ * $Log: compress.c,v $ * Revision 4.0 85/07/30 12:50:00 joe * Removed ferror() calls in output routine on every output except first. * Prepared for release to the world. * * Revision 3.6 85/07/04 01:22:21 joe * Remove much wasted storage by overlaying hash table with the tables * used by decompress: tab_suffix[1<putc] and * added signal catcher [plus beef in writeerr()] to delete effluvia. * * Revision 2.0 84/08/28 22:00:00 petsd!joe * Add check for foreground before prompting user. Insert maxbits into * compressed file. Force file being uncompressed to end with ".Z". * Added "-c" flag and "zcat". Prepared for release. * * Revision 1.10 84/08/24 18:28:00 turtlevax!ken * Will only compress regular files (no directories), added a magic number * header (plus an undocumented -n flag to handle old files without headers), * added -f flag to force overwriting of possibly existing destination file, * otherwise the user is prompted for a response. Will tack on a .Z to a * filename if it doesn't have one when decompressing. Will only replace * file if it was compressed. * * Revision 1.9 84/08/16 17:28:00 turtlevax!ken * Removed scanargs(), getopt(), added .Z extension and unlimited number of * filenames to compress. Flags may be clustered (-Ddvb12) or separated * (-D -d -v -b 12), or combination thereof. Modes and other status is * copied with copystat(). -O bug for 4.2 seems to have disappeared with * 1.8. * * Revision 1.8 84/08/09 23:15:00 joe * Made it compatible with vax version, installed jim's fixes/enhancements * * Revision 1.6 84/08/01 22:08:00 joe * Sped up algorithm significantly by sorting the compress chain. * * Revision 1.5 84/07/13 13:11:00 srd * Added C version of vax asm routines. Changed structure to arrays to * save much memory. Do unsigned compares where possible (faster on * Perkin-Elmer) * * Revision 1.4 84/07/05 03:11:11 thomas * Clean up the code a little and lint it. (Lint complains about all * the regs used in the asm, but I'm not going to "fix" this.) * * Revision 1.3 84/07/05 02:06:54 thomas * Minor fixes. * * Revision 1.2 84/07/05 00:27:27 thomas * Add variable bit length output. * */ static char rcs_ident[] = "$Header: compress.c,v 4.0 85/07/30 12:50:00 joe Release $"; #include #include #include #include #include #ifdef notdef #include #endif #include #define ARGVAL() (*++(*argv) || (--argc && *++argv)) int n_bits; /* number of bits/code */ int maxbits = BITS; /* user settable max # bits/code */ code_int maxcode; /* maximum code, given n_bits */ code_int maxmaxcode = 1 << BITS; /* should NEVER generate this code */ #ifdef COMPATIBLE /* But wrong! */ # define MAXCODE(n_bits) (1 << (n_bits) - 1) #else # define MAXCODE(n_bits) ((1 << (n_bits)) - 1) #endif /* COMPATIBLE */ #ifdef XENIX_16 count_int htab0[8192]; count_int htab1[8192]; count_int htab2[8192]; count_int htab3[8192]; count_int htab4[8192]; count_int htab5[8192]; count_int htab6[8192]; count_int htab7[8192]; count_int htab8[HSIZE-65536]; count_int * htab[9] = { htab0, htab1, htab2, htab3, htab4, htab5, htab6, htab7, htab8 }; #define htabof(i) (htab[(i) >> 13][(i) & 0x1fff]) unsigned short code0tab[16384]; unsigned short code1tab[16384]; unsigned short code2tab[16384]; unsigned short code3tab[16384]; unsigned short code4tab[16384]; unsigned short * codetab[5] = { code0tab, code1tab, code2tab, code3tab, code4tab }; #define codetabof(i) (codetab[(i) >> 14][(i) & 0x3fff]) #else /* Normal machine */ #ifdef sel /* gould base register braindamage */ /*NOBASE*/ count_int htab [HSIZE]; unsigned short codetab [HSIZE]; /*NOBASE*/ #else count_int htab [HSIZE]; unsigned short codetab [HSIZE]; #endif sel #define htabof(i) htab[i] #define codetabof(i) codetab[i] #endif /* XENIX_16 */ code_int hsize = HSIZE; /* for dynamic table sizing */ count_int fsize; /* * To save much memory, we overlay the table used by compress() with those * used by decompress(). The tab_prefix table is the same size and type * as the codetab. The tab_suffix table needs 2**BITS characters. We * get this from the beginning of htab. The output stack uses the rest * of htab, and contains characters. There is plenty of room for any * possible stack (stack used to be 8000 characters). */ #define tab_prefixof(i) codetabof(i) #ifdef XENIX_16 # define tab_suffixof(i) ((char_type *)htab[(i)>>15])[(i) & 0x7fff] # define de_stack ((char_type *)(htab2)) #else /* Normal machine */ # define tab_suffixof(i) ((char_type *)(htab))[i] # define de_stack ((char_type *)&tab_suffixof(1< debug * -V => print Version; debug verbose * -d => do_decomp * -v => unquiet * -f => force overwrite of output file * -n => no header: useful to uncompress old files * -s => strong_comp=1 * -b maxbits => maxbits. If -b is specified, then maxbits MUST be * given also. * -l level => strong_level. If -l is specified, then level MUST be * given also. * -c => cat all output to stdout * -C => generate output compatible with compress 2.0. * if a string is left, must be an input filename. */ for (argc--, argv++; argc > 0; argc--, argv++) { if (**argv == '-') { /* A flag argument */ while (*++(*argv)) { /* Process all flags in this arg */ switch (**argv) { #ifdef DEBUG case 'D': debug = 1; break; case 'V': verbose = 1; version(); break; #else case 'V': version(); break; #endif /* DEBUG */ case 'v': quiet = 0; break; case 'd': do_decomp = 1; break; case 'f': case 'F': overwrite = 1; force = 1; break; case 'n': nomagic = 1; break; case 'C': block_compress = 0; break; case 's': strong_comp = 1; break; case 'b': if (!ARGVAL()) { fprintf(stderr, "Missing maxbits\n"); Usage(); exit(1); } maxbits = atoi(*argv); goto nextarg; case 'l': if (!ARGVAL()) { fprintf(stderr, "Missing level\n"); Usage(); exit(1); } strong_level = atoi(*argv); goto nextarg; case 'c': zcat_flg = 1; break; case 'q': quiet = 1; break; default: fprintf(stderr, "Unknown flag: '%c'; ", **argv); Usage(); exit(1); } } } else { /* Input file name */ *fileptr++ = *argv; /* Build input file list */ *fileptr = NULL; /* process nextarg; */ } nextarg: continue; } if(maxbits < INIT_BITS) maxbits = INIT_BITS; if (maxbits > BITS) maxbits = BITS; if (strong_level > Z_BEST_COMPRESSION) strong_level = Z_BEST_COMPRESSION; maxmaxcode = 1 << maxbits; if (nomagic) strong_comp = 0; if (*filelist != NULL) { for (fileptr = filelist; *fileptr; fileptr++) { exit_stat = 0; if (do_decomp) { /* DECOMPRESSION */ /* Check for .Z suffix */ if (strcmp(*fileptr + strlen(*fileptr) - 2, ".Z") != 0) { /* No .Z: tack one on */ strcpy(tempname, *fileptr); strcat(tempname, ".Z"); *fileptr = tempname; } /* Open input file */ if ((freopen(*fileptr, "r", stdin)) == NULL) { perror(*fileptr); perm_stat = 1; continue; } #ifndef COMPATIBLE /* Check the magic number */ if (nomagic == 0) { char_type magic[2]; magic[0] = getchar(); magic[1] = getchar(); if ((magic[0] == magic_strong[0]) && (magic[1] == magic_strong[1])) { strong_comp = 1; goto strong_file; } strong_comp = 0; if ((magic[0] != magic_header[0]) || (magic[1] != magic_header[1])) { fprintf(stderr, "%s: not in compressed format\n", *fileptr); continue; } maxbits = getchar(); /* set -b from file */ block_compress = maxbits & BLOCK_MASK; maxbits &= BIT_MASK; maxmaxcode = 1 << maxbits; if(maxbits > BITS) { fprintf(stderr, "%s: compressed with %d bits, can only handle %d bits\n", *fileptr, maxbits, BITS); continue; } strong_file: ; } #endif /* Generate output filename */ strcpy(ofname, *fileptr); ofname[strlen(*fileptr) - 2] = '\0'; /* Strip off .Z */ } else { /* COMPRESSION */ if (strcmp(*fileptr + strlen(*fileptr) - 2, ".Z") == 0) { fprintf(stderr, "%s: already has .Z suffix -- no change\n", *fileptr); continue; } /* Open input file */ if ((freopen(*fileptr, "r", stdin)) == NULL) { perror(*fileptr); perm_stat = 1; continue; } stat ( *fileptr, &statbuf ); fsize = (long) statbuf.st_size; /* * tune hash table size for small files -- ad hoc, * but the sizes match earlier #defines, which * serve as upper bounds on the number of output codes. */ hsize = HSIZE; if ( fsize < (1 << 12) ) hsize = min ( 5003, HSIZE ); else if ( fsize < (1 << 13) ) hsize = min ( 9001, HSIZE ); else if ( fsize < (1 << 14) ) hsize = min ( 18013, HSIZE ); else if ( fsize < (1 << 15) ) hsize = min ( 35023, HSIZE ); else if ( fsize < 47000 ) hsize = min ( 50021, HSIZE ); /* Generate output filename */ strcpy(ofname, *fileptr); #ifndef BSD4_2 /* Short filenames */ if ((cp=rindex(ofname,'/')) != NULL) cp++; else cp = ofname; if (strlen(cp) > 12) { fprintf(stderr,"%s: filename too long to tack on .Z\n",cp); continue; } #endif /* BSD4_2 Long filenames allowed */ strcat(ofname, ".Z"); } /* Check for overwrite of existing file */ if (overwrite == 0 && zcat_flg == 0) { if (stat(ofname, &statbuf) == 0) { char response[2]; response[0] = 'n'; fprintf(stderr, "%s already exists;", ofname); if (bgnd_flag == 0 && isatty(2)) { fprintf(stderr, " do you wish to overwrite %s (y or n)? ", ofname); fflush(stderr); read(2, response, 2); while (response[1] != '\n') { if (read(2, response+1, 1) < 0) { /* Ack! */ perror("stderr"); break; } } } if (response[0] != 'y') { fprintf(stderr, "\tnot overwritten\n"); continue; } } } if(zcat_flg == 0) { /* Open output file */ if (freopen(ofname, "w", stdout) == NULL) { perror(ofname); perm_stat = 1; continue; } precious = 0; if(!quiet) fprintf(stderr, "%s: ", *fileptr); } /* Actually do the compression/decompression */ if (do_decomp == 0) compress(); #ifndef DEBUG else decompress(); #else else if (debug == 0) decompress(); else printcodes(); if (verbose) dump_tab(); #endif /* DEBUG */ if(zcat_flg == 0) { copystat(*fileptr, ofname); /* Copy stats */ precious = 1; if((exit_stat == 1) || (!quiet)) putc('\n', stderr); } } } else { /* Standard input */ if (do_decomp == 0) { compress(); #ifdef DEBUG if(verbose) dump_tab(); #endif /* DEBUG */ if(!quiet) putc('\n', stderr); } else { #ifndef COMPATIBLE /* Check the magic number */ if (nomagic == 0) { char_type magic[2]; magic[0] = getchar(); magic[1] = getchar(); if ((magic[0] == magic_strong[0]) && (magic[1] == magic_strong[1])) { strong_comp = 1; goto strong_stdin; } strong_comp = 0; if ((magic[0] != magic_header[0]) || (magic[1] != magic_header[1])) { fprintf(stderr, "stdin: not in compressed format\n"); exit(1); } maxbits = getchar(); /* set -b from file */ block_compress = maxbits & BLOCK_MASK; maxbits &= BIT_MASK; maxmaxcode = 1 << maxbits; fsize = 100000; /* assume stdin large for USERMEM */ if(maxbits > BITS) { fprintf(stderr, "stdin: compressed with %d bits, can only handle %d bits\n", maxbits, BITS); exit(1); } strong_stdin: ; } #endif #ifndef DEBUG decompress(); #else if (debug == 0) decompress(); else printcodes(); if (verbose) dump_tab(); #endif /* DEBUG */ } } exit(perm_stat ? perm_stat : exit_stat); } static int offset; long int in_count = 1; /* length of input */ long int bytes_out; /* length of compressed output */ long int out_count = 0; /* # of codes output (for debugging) */ /* * compress stdin to stdout * * Algorithm: use open addressing double hashing (no chaining) on the * prefix code / next character combination. We do a variant of Knuth's * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime * secondary probe. Here, the modular division first probe is gives way * to a faster exclusive-or manipulation. Also do block compression with * an adaptive reset, whereby the code table is cleared when the compression * ratio decreases, but after the table fills. The variable-length output * codes are re-sized at this point, and a special CLEAR code is generated * for the decompressor. Late addition: construct the table according to * file size for noticeable speed improvement on small files. Please direct * questions about this implementation to ames!jaw. */ compress() { register long fcode; register code_int i = 0; register int c; register code_int ent; #ifdef XENIX_16 register code_int disp; #else /* Normal machine */ register int disp; #endif register code_int hsize_reg; register int hshift; #ifndef COMPATIBLE if (strong_comp) { compFile cf; char buf[4096]; int len, err; putchar(magic_strong[0]); putchar(magic_strong[1]); if(ferror(stdout)) writeerr(); cf = compress_open(stdout, strong_level); if (cf == NULL) { fprintf(stderr, "compress: not enough memory for strong compression state info\n"); unlink(ofname); exit(1); } for (;;) { len = fread(buf, 1, sizeof(buf), stdin); if (len < 0) { perror("compress: fread"); unlink(ofname); exit(1); } if (len == 0) break; if (compwrite(cf, buf, len) != len) { fprintf(stderr, "compress: compwrite: %s\n", comperror(cf, &err)); unlink(ofname); exit(1); } } if (compclose(cf) != Z_OK) { fprintf(stderr, "compress: compclose: %s\n", comperror(cf, &err)); unlink(ofname); exit(1); } return; } if (nomagic == 0) { putchar(magic_header[0]); putchar(magic_header[1]); putchar((char)(maxbits | block_compress)); if(ferror(stdout)) writeerr(); } #endif /* COMPATIBLE */ offset = 0; bytes_out = 3; /* includes 3-byte header mojo */ out_count = 0; clear_flg = 0; ratio = 0; in_count = 1; checkpoint = CHECK_GAP; maxcode = MAXCODE(n_bits = INIT_BITS); free_ent = ((block_compress) ? FIRST : 256 ); ent = getchar (); hshift = 0; for ( fcode = (long) hsize; fcode < 65536L; fcode *= 2L ) hshift++; hshift = 8 - hshift; /* set hash code range bound */ hsize_reg = hsize; cl_hash( (count_int) hsize_reg); /* clear hash table */ #ifdef SIGNED_COMPARE_SLOW while ( (c = getchar()) != (unsigned) EOF ) { #else while ( (c = getchar()) != EOF ) { #endif in_count++; fcode = (long) (((long) c << maxbits) + ent); i = ((c << hshift) ^ ent); /* xor hashing */ if ( htabof (i) == fcode ) { ent = codetabof (i); continue; } else if ( (long)htabof (i) < 0 ) /* empty slot */ goto nomatch; disp = hsize_reg - i; /* secondary hash (after G. Knott) */ if ( i == 0 ) disp = 1; probe: if ( (i -= disp) < 0 ) i += hsize_reg; if ( htabof (i) == fcode ) { ent = codetabof (i); continue; } if ( (long)htabof (i) > 0 ) goto probe; nomatch: output ( (code_int) ent ); out_count++; ent = c; #ifdef SIGNED_COMPARE_SLOW if ( (unsigned) free_ent < (unsigned) maxmaxcode) { #else if ( free_ent < maxmaxcode ) { #endif codetabof (i) = free_ent++; /* code -> hashtable */ htabof (i) = fcode; } else if ( (count_int)in_count >= checkpoint && block_compress ) cl_block (); } /* * Put out the final code. */ output( (code_int)ent ); out_count++; output( (code_int)-1 ); /* * Print out stats on stderr */ if(zcat_flg == 0 && !quiet) { #ifdef DEBUG fprintf( stderr, "%ld chars in, %ld codes (%ld bytes) out, compression factor: ", in_count, out_count, bytes_out ); prratio( stderr, in_count, bytes_out ); fprintf( stderr, "\n"); fprintf( stderr, "\tCompression as in compact: " ); prratio( stderr, in_count-bytes_out, in_count ); fprintf( stderr, "\n"); fprintf( stderr, "\tLargest code (of last block) was %d (%d bits)\n", free_ent - 1, n_bits ); #else /* !DEBUG */ fprintf( stderr, "Compression: " ); prratio( stderr, in_count-bytes_out, in_count ); #endif /* DEBUG */ } if(bytes_out > in_count) /* exit(2) if no savings */ exit_stat = 2; return; } /***************************************************************** * TAG( output ) * * Output the given code. * Inputs: * code: A n_bits-bit integer. If == -1, then EOF. This assumes * that n_bits =< (long)wordsize - 1. * Outputs: * Outputs code to the file. * Assumptions: * Chars are 8 bits long. * Algorithm: * Maintain a BITS character long buffer (so that 8 codes will * fit in it exactly). Use the VAX insv instruction to insert each * code in turn. When the buffer fills up empty it and start over. */ static char buf[BITS]; #ifndef vax char_type lmask[9] = {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00}; char_type rmask[9] = {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff}; #endif /* vax */ output( code ) code_int code; { #ifdef DEBUG static int col = 0; #endif /* DEBUG */ /* * On the VAX, it is important to have the register declarations * in exactly the order given, or the asm will break. */ register int r_off = offset, bits= n_bits; register char * bp = buf; #ifdef DEBUG if ( verbose ) fprintf( stderr, "%5d%c", code, (col+=6) >= 74 ? (col = 0, '\n') : ' ' ); #endif /* DEBUG */ if ( code >= 0 ) { #ifdef vax /* VAX DEPENDENT!! Implementation on other machines is below. * * Translation: Insert BITS bits from the argument starting at * offset bits from the beginning of buf. */ 0; /* Work around for pcc -O bug with asm and if stmt */ asm( "insv 4(ap),r11,r10,(r9)" ); #else /* not a vax */ /* * byte/bit numbering on the VAX is simulated by the following code */ /* * Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* * Since code is always >= 8 bits, only need to mask the first * hunk on the left. */ *bp = (*bp & rmask[r_off]) | (code << r_off) & lmask[r_off]; bp++; bits -= (8 - r_off); code >>= 8 - r_off; /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if ( bits >= 8 ) { *bp++ = code; code >>= 8; bits -= 8; } /* Last bits. */ if(bits) *bp = code; #endif /* vax */ offset += n_bits; if ( offset == (n_bits << 3) ) { bp = buf; bits = n_bits; bytes_out += bits; do putchar(*bp++); while(--bits); offset = 0; } /* * If the next entry is going to be too big for the code size, * then increase it, if possible. */ if ( free_ent > maxcode || (clear_flg > 0)) { /* * Write the whole buffer, because the input side won't * discover the size increase until after it has read it. */ if ( offset > 0 ) { if( fwrite( buf, 1, n_bits, stdout ) != n_bits) writeerr(); bytes_out += n_bits; } offset = 0; if ( clear_flg ) { maxcode = MAXCODE (n_bits = INIT_BITS); clear_flg = 0; } else { n_bits++; if ( n_bits == maxbits ) maxcode = maxmaxcode; else maxcode = MAXCODE(n_bits); } #ifdef DEBUG if ( debug ) { fprintf( stderr, "\nChange to %d bits\n", n_bits ); col = 0; } #endif /* DEBUG */ } } else { /* * At EOF, write the rest of the buffer. */ if ( offset > 0 ) fwrite( buf, 1, (offset + 7) / 8, stdout ); bytes_out += (offset + 7) / 8; offset = 0; fflush( stdout ); #ifdef DEBUG if ( verbose ) fprintf( stderr, "\n" ); #endif /* DEBUG */ if( ferror( stdout ) ) writeerr(); } } /* * Decompress stdin to stdout. This routine adapts to the codes in the * file building the "string" table on-the-fly; requiring no table to * be stored in the compressed file. The tables used herein are shared * with those of the compress() routine. See the definitions above. */ decompress() { register char_type *stackp; register int finchar; register code_int code, oldcode, incode; #ifndef COMPATIBLE if (strong_comp) { compFile cf; char buf[4096]; int len, err; cf = uncompress_open(stdin); if (cf == NULL) { fprintf(stderr, "uncompress: not enough memory for strong compression state info\n"); unlink(ofname); exit(1); } for (;;) { len = compread(cf, buf, sizeof(buf)); if (len < 0) { fprintf(stderr, "uncompress: compread: %s\n", comperror(cf, &err)); unlink(ofname); exit(1); } if (len == 0) break; if (fwrite(buf, 1, len, stdout) != len) { perror("compress: fwrite"); unlink(ofname); exit(1); } } if (compclose(cf) != Z_OK) { fprintf(stderr, "compress: compclose: %s\n", comperror(cf, &err)); unlink(ofname); exit(1); } return; } #endif /* COMPATIBLE */ /* * As above, initialize the first 256 entries in the table. */ maxcode = MAXCODE(n_bits = INIT_BITS); for ( code = 255; code >= 0; code-- ) { tab_prefixof(code) = 0; tab_suffixof(code) = (char_type)code; } free_ent = ((block_compress) ? FIRST : 256 ); finchar = oldcode = getcode(); if(oldcode == -1) /* EOF already? */ return; /* Get out of here */ putchar( (char)finchar ); /* first code must be 8 bits = char */ if(ferror(stdout)) /* Crash if can't write */ writeerr(); stackp = de_stack; while ( (code = getcode()) > -1 ) { if ( (code == CLEAR) && block_compress ) { for ( code = 255; code >= 0; code-- ) tab_prefixof(code) = 0; clear_flg = 1; free_ent = FIRST - 1; if ( (code = getcode ()) == -1 ) /* O, untimely death! */ break; } incode = code; /* * Special case for KwKwK string. */ if ( code >= free_ent ) { *stackp++ = finchar; code = oldcode; } /* * Generate output characters in reverse order */ #ifdef SIGNED_COMPARE_SLOW while ( ((unsigned long)code) >= ((unsigned long)256) ) { #else while ( code >= 256 ) { #endif *stackp++ = tab_suffixof(code); code = tab_prefixof(code); } *stackp++ = finchar = tab_suffixof(code); /* * And put them out in forward order */ do putchar ( *--stackp ); while ( stackp > de_stack ); /* * Generate the new entry. */ if ( (code=free_ent) < maxmaxcode ) { tab_prefixof(code) = (unsigned short)oldcode; tab_suffixof(code) = finchar; free_ent = code+1; } /* * Remember previous code. */ oldcode = incode; } fflush( stdout ); if(ferror(stdout)) writeerr(); } /***************************************************************** * TAG( getcode ) * * Read one code from the standard input. If EOF, return -1. * Inputs: * stdin * Outputs: * code or -1 is returned. */ code_int getcode() { /* * On the VAX, it is important to have the register declarations * in exactly the order given, or the asm will break. */ register code_int code; static int offset = 0, size = 0; static char_type buf[BITS]; register int r_off, bits; register char_type *bp = buf; if ( clear_flg > 0 || offset >= size || free_ent > maxcode ) { /* * If the next entry will be too big for the current code * size, then we must increase the size. This implies reading * a new buffer full, too. */ if ( free_ent > maxcode ) { n_bits++; if ( n_bits == maxbits ) maxcode = maxmaxcode; /* won't get any bigger now */ else maxcode = MAXCODE(n_bits); } if ( clear_flg > 0) { maxcode = MAXCODE (n_bits = INIT_BITS); clear_flg = 0; } size = fread( buf, 1, n_bits, stdin ); if ( size <= 0 ) return -1; /* end of file */ offset = 0; /* Round size down to integral number of codes */ size = (size << 3) - (n_bits - 1); } r_off = offset; bits = n_bits; #ifdef vax asm( "extzv r10,r9,(r8),r11" ); #else /* not a vax */ /* * Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* Get first part (low order bits) */ #ifdef NO_UCHAR code = ((*bp++ >> r_off) & rmask[8 - r_off]) & 0xff; #else code = (*bp++ >> r_off); #endif /* NO_UCHAR */ bits -= (8 - r_off); r_off = 8 - r_off; /* now, offset into code word */ /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if ( bits >= 8 ) { #ifdef NO_UCHAR code |= (*bp++ & 0xff) << r_off; #else code |= *bp++ << r_off; #endif /* NO_UCHAR */ r_off += 8; bits -= 8; } /* high order bits. */ code |= (*bp & rmask[bits]) << r_off; #endif /* vax */ offset += n_bits; return code; } char * rindex(s, c) /* For those who don't have it in libc.a */ register char *s, c; { char *p; for (p = NULL; *s; s++) if (*s == c) p = s; return(p); } #ifdef DEBUG printcodes() { /* * Just print out codes from input file. For debugging. */ code_int code; int col = 0, bits; bits = n_bits = INIT_BITS; maxcode = MAXCODE(n_bits); free_ent = ((block_compress) ? FIRST : 256 ); while ( ( code = getcode() ) >= 0 ) { if ( (code == CLEAR) && block_compress ) { free_ent = FIRST - 1; clear_flg = 1; } else if ( free_ent < maxmaxcode ) free_ent++; if ( bits != n_bits ) { fprintf(stderr, "\nChange to %d bits\n", n_bits ); bits = n_bits; col = 0; } fprintf(stderr, "%5d%c", code, (col+=6) >= 74 ? (col = 0, '\n') : ' ' ); } putc( '\n', stderr ); exit( 0 ); } code_int sorttab[1<= 0) { sorttab[codetabof(i)] = i; } } first = block_compress ? FIRST : 256; for(i = first; i < free_ent; i++) { fprintf(stderr, "%5d: \"", i); de_stack[--stack_top] = '\n'; de_stack[--stack_top] = '"'; stack_top = in_stack((htabof(sorttab[i])>>maxbits)&0xff, stack_top); for(ent=htabof(sorttab[i]) & ((1< 256; ent=htabof(sorttab[ent]) & ((1<> maxbits, stack_top); } stack_top = in_stack(ent, stack_top); fwrite( &de_stack[stack_top], 1, STACK_SIZE-stack_top, stderr); stack_top = STACK_SIZE; } } else if(!debug) { /* decompressing */ for ( i = 0; i < free_ent; i++ ) { ent = i; c = tab_suffixof(ent); if ( isascii(c) && isprint(c) ) fprintf( stderr, "%5d: %5d/'%c' \"", ent, tab_prefixof(ent), c ); else fprintf( stderr, "%5d: %5d/\\%03o \"", ent, tab_prefixof(ent), c ); de_stack[--stack_top] = '\n'; de_stack[--stack_top] = '"'; for ( ; ent != NULL; ent = (ent >= FIRST ? tab_prefixof(ent) : NULL) ) { stack_top = in_stack(tab_suffixof(ent), stack_top); } fwrite( &de_stack[stack_top], 1, STACK_SIZE - stack_top, stderr ); stack_top = STACK_SIZE; } } } int in_stack(c, stack_top) register c, stack_top; { if ( (isascii(c) && isprint(c) && c != '\\') || c == ' ' ) { de_stack[--stack_top] = c; } else { switch( c ) { case '\n': de_stack[--stack_top] = 'n'; break; case '\t': de_stack[--stack_top] = 't'; break; case '\b': de_stack[--stack_top] = 'b'; break; case '\f': de_stack[--stack_top] = 'f'; break; case '\r': de_stack[--stack_top] = 'r'; break; case '\\': de_stack[--stack_top] = '\\'; break; default: de_stack[--stack_top] = '0' + c % 8; de_stack[--stack_top] = '0' + (c / 8) % 8; de_stack[--stack_top] = '0' + c / 64; break; } de_stack[--stack_top] = '\\'; } return stack_top; } #endif /* DEBUG */ writeerr() { perror ( ofname ); unlink ( ofname ); exit ( 1 ); } copystat(ifname, ofname) char *ifname, *ofname; { struct stat statbuf; int mode; time_t timep[2]; fclose(stdout); if (stat(ifname, &statbuf)) { /* Get stat on input file */ perror(ifname); return; } if ((statbuf.st_mode & S_IFMT/*0170000*/) != S_IFREG/*0100000*/) { if(quiet) fprintf(stderr, "%s: ", ifname); fprintf(stderr, " -- not a regular file: unchanged"); exit_stat = 1; perm_stat = 1; } else if (statbuf.st_nlink > 1) { if(quiet) fprintf(stderr, "%s: ", ifname); fprintf(stderr, " -- has %d other links: unchanged", statbuf.st_nlink - 1); exit_stat = 1; perm_stat = 1; } else if (exit_stat == 2 && (!force)) { /* No compression: remove file.Z */ if(!quiet) fprintf(stderr, " -- file unchanged"); } else { /* ***** Successful Compression ***** */ exit_stat = 0; mode = statbuf.st_mode & 07777; if (chmod(ofname, mode)) /* Copy modes */ perror(ofname); chown(ofname, statbuf.st_uid, statbuf.st_gid); /* Copy ownership */ timep[0] = statbuf.st_atime; timep[1] = statbuf.st_mtime; utime(ofname, timep); /* Update last accessed and modified times */ if (unlink(ifname)) /* Remove input file */ perror(ifname); if(!quiet) fprintf(stderr, " -- replaced with %s", ofname); return; /* Successful return */ } /* Unsuccessful return -- one of the tests failed */ if (unlink(ofname)) perror(ofname); } onintr ( ) { if (!precious) unlink ( ofname ); exit ( 1 ); } oops ( ) /* wild pointer -- assume bad input */ { if ( do_decomp ) fprintf ( stderr, "uncompress: corrupt input\n" ); unlink ( ofname ); exit ( 1 ); } cl_block () /* table clear for block compress */ { register long int rat; checkpoint = in_count + CHECK_GAP; #ifdef DEBUG if ( debug ) { fprintf ( stderr, "count: %ld, ratio: ", in_count ); prratio ( stderr, in_count, bytes_out ); fprintf ( stderr, "\n"); } #endif /* DEBUG */ if(in_count > 0x007fffff) { /* shift will overflow */ rat = bytes_out >> 8; if(rat == 0) { /* Don't divide by zero */ rat = 0x7fffffff; } else { rat = in_count / rat; } } else { rat = (in_count << 8) / bytes_out; /* 8 fractional bits */ } if ( rat > ratio ) { ratio = rat; } else { ratio = 0; #ifdef DEBUG if(verbose) dump_tab(); /* dump string table */ #endif cl_hash ( (count_int) hsize ); free_ent = FIRST; clear_flg = 1; output ( (code_int) CLEAR ); #ifdef DEBUG if(debug) fprintf ( stderr, "clear\n" ); #endif /* DEBUG */ } } cl_hash(hsize) /* reset code table */ register count_int hsize; { #ifndef XENIX_16 /* Normal machine */ register count_int *htab_p = htab+hsize; #else register j; register long k = hsize; register count_int *htab_p; #endif register long i; register long m1 = -1; #ifdef XENIX_16 for(j=0; j<=8 && k>=0; j++,k-=8192) { i = 8192; if(k < 8192) { i = k; } htab_p = &(htab[j][i]); i -= 16; if(i > 0) { #else i = hsize - 16; #endif do { /* might use Sys V memset(3) here */ *(htab_p-16) = m1; *(htab_p-15) = m1; *(htab_p-14) = m1; *(htab_p-13) = m1; *(htab_p-12) = m1; *(htab_p-11) = m1; *(htab_p-10) = m1; *(htab_p-9) = m1; *(htab_p-8) = m1; *(htab_p-7) = m1; *(htab_p-6) = m1; *(htab_p-5) = m1; *(htab_p-4) = m1; *(htab_p-3) = m1; *(htab_p-2) = m1; *(htab_p-1) = m1; htab_p -= 16; } while ((i -= 16) >= 0); #ifdef XENIX_16 } } #endif for ( i += 16; i > 0; i-- ) *--htab_p = m1; } prratio(stream, num, den) FILE *stream; long int num, den; { register int q; /* Doesn't need to be long */ if(num > 214748L) { /* 2147483647/10000 */ q = num / (den / 10000L); } else { q = 10000L * num / den; /* Long calculations, though */ } if (q < 0) { putc('-', stream); q = -q; } fprintf(stream, "%d.%02d%%", q / 100, q % 100); } version() { fprintf(stderr, "%s, Berkeley 5.10 1/19/99\n", rcs_ident); fprintf(stderr, "Options: "); #ifdef vax fprintf(stderr, "vax, "); #endif #ifdef NO_UCHAR fprintf(stderr, "NO_UCHAR, "); #endif #ifdef SIGNED_COMPARE_SLOW fprintf(stderr, "SIGNED_COMPARE_SLOW, "); #endif #ifdef XENIX_16 fprintf(stderr, "XENIX_16, "); #endif #ifdef COMPATIBLE fprintf(stderr, "COMPATIBLE, "); #endif #ifdef DEBUG fprintf(stderr, "DEBUG, "); #endif #ifdef BSD4_2 fprintf(stderr, "BSD4_2, "); #endif fprintf(stderr, "BITS = %d\n", BITS); } derr, "%s, Berkeley 5.10 1/19/99\n", rcs_ident); fprintf(stderr, "Options: "); #ifdef vax fprintf(stderr, "vax, "); #endif #ifdef NO_UCHAR fprintf(stderr, "NO_UCHAR, "); #endif #ifdef SIGNED_COMPARE_SLOW fprintf(stderr, "SIGNED_COMPARE_SLOW, "); #endif #ifdef XENIX_16 fprintf(stderr, "XENIX_16, "); #endif #ifdef COMPATIBLE fprintf(stderr, "COMPATIBLE, "); #ucb/compress/Makefile 444 2000 51 2123 6651537147 10173 # # Copyright (c) 1987 Regents of the University of California. # All rights reserved. The Berkeley software License Agreement # specifies the terms and conditions for redistribution. # # @(#)Makefile 5.11 (Berkeley) 1/21/99 # CFLAGS= -O -DBSD4_2 -DBITS=16 LIBC= /lib/libc.a LIBZ= /usr/lib/libz.a SRCS= compress.c gzcompat.c OBJS= compress.o gzcompat.o all: compress gzcompat compress: compress.o ${LIBC} ${LIBZ} ${CC} ${CFLAGS} -o $@ compress.o -lz gzcompat: gzcompat.o ${LIBC} ${CC} ${CFLAGS} -o $@ gzcompat.o clean: FRC rm -f ${OBJS} core compress gzcompat depend: FRC mkdep ${CFLAGS} ${SRCS} install: FRC install -s -o bin -g bin -m 755 compress ${DESTDIR}/usr/ucb/compress rm -f ${DESTDIR}/usr/ucb/uncompress ${DESTDIR}/usr/ucb/zcat ln ${DESTDIR}/usr/ucb/compress ${DESTDIR}/usr/ucb/uncompress ln ${DESTDIR}/usr/ucb/compress ${DESTDIR}/usr/ucb/zcat install -s -o bin -g bin -m 755 gzcompat ${DESTDIR}/usr/ucb/gzcompat lint: FRC lint ${CFLAGS} ${SRCS} tags: FRC ctags ${SRCS} FRC: # DO NOT DELETE THIS LINE -- mkdep uses it. # DO NOT PUT ANYTHING AFTER THIS LINE, IT WILL GO AWAY. S} ${SRCS} install: FRC install -s -o bin -g bin -m 755 compress ${DESTDIR}/usr/ucb/compress rm -f ${DESTDIR}/usr/ucb/uncompress ${DESTDIR}/usr/ucb/zcat ln ${DESTDIR}/usr/ucb/compress ${DESTDIR}/usr/ucb/uncompress ln ${DESTDIR}/usr/ucb/compress ${DESTDIR}/usr/ucb/zcat install -s -o bin -g bin -m 755 gzcompat ${DESTDIR}/usr/ucb/gzcompat lint: FRC lint ${CFLAGS} ${SRCS} tags: FRC ctags ${SRCS} FRC: # DO NOT DELETE Tucb/compress/gzcompat.c 444 2000 51 6771 6651536412 10532 #ifndef lint static char sccsid[] = "@(#)gzcompat.c 5.1 (Berkeley) 1/21/99"; #endif /* gzcompat converts between compress -s and gzip formats. */ #include char magic_strong[2] = {037, 0241}; char magic_gzip[2] = {037, 0213}; struct gzheader { unsigned char cm; unsigned char flg; unsigned char mtime[4]; unsigned char xfl; unsigned char os; } gzheader; #define CM_DEFLATE 0x08 #define FTEXT 0x01 #define FHCRC 0x02 #define FEXTRA 0x04 #define FNAME 0x08 #define FCOMMENT 0x10 #define FRSVD 0xE0 #define OS_UNIX 0x03 int main() { char buf[4096]; int len; int mkgzip; /* First read the input magic number. */ len = fread(buf, 1, 2, stdin); if (len < 0) { perror("stdin"); return 1; } if (len != 2) { fprintf(stderr, "stdin: not in compress -s or gzip format\n"); return 1; } if (buf[0] == magic_strong[0] && buf[1] == magic_strong[1]) mkgzip = 1; else if (buf[0] == magic_gzip[0] && buf[1] == magic_gzip[1]) mkgzip = 0; else { fprintf(stderr, "stdin: not in compress -s or gzip format\n"); return 1; } /* Now read and check the gzip header if necessary. */ if (!mkgzip) { len = fread(&gzheader, sizeof(struct gzheader), 1, stdin); if (len < 0) { perror("stdin"); return 1; } if (len != 1) { fprintf(stderr, "stdin: invalid gzip header\n"); return 1; } if (gzheader.cm != CM_DEFLATE || gzheader.flg & FRSVD) { fprintf(stderr, "stdin: invalid gzip header\n"); return 1; } if (gzheader.flg & FEXTRA) { int count; count = getchar(); if (ferror(stdin)) { perror("stdin"); return 1; } if (feof(stdin)) { fprintf(stderr, "stdin: invalid gzip header\n"); return 1; } while (count) { getchar(); if (ferror(stdin)) { perror("stdin"); return 1; } if (feof(stdin)) { fprintf(stderr, "stdin: invalid gzip header\n"); return 1; } count--; } } if (gzheader.flg & FNAME) { int ch; do { ch = getchar(); if (ferror(stdin)) { perror("stdin"); return 1; } if (feof(stdin)) { fprintf(stderr, "stdin: invalid gzip header\n"); return 1; } } while (ch); } if (gzheader.flg & FCOMMENT) { int ch; do { ch = getchar(); if (ferror(stdin)) { perror("stdin"); return 1; } if (feof(stdin)) { fprintf(stderr, "stdin: invalid gzip header\n"); return 1; } } while (ch); } if (gzheader.flg & FHCRC) { len = fread(buf, 1, 2, stdin); if (len < 0) { perror("stdin"); return 1; } if (len != 2) { fprintf(stderr, "stdin: invalid gzip header\n"); return 1; } } } /* Now write the output magic number. */ if (mkgzip) { if (fwrite(magic_gzip, 1, 2, stdout) != 2) { perror("stdout"); return 1; } } else { if (fwrite(magic_strong, 1, 2, stdout) != 2) { perror("stdout"); return 1; } } /* Now write the gzip header if necessary. */ if (mkgzip) { gzheader.cm = CM_DEFLATE; gzheader.flg = 0; gzheader.mtime[0] = 0; gzheader.mtime[1] = 0; gzheader.mtime[2] = 0; gzheader.mtime[3] = 0; gzheader.xfl = 0; gzheader.os = OS_UNIX; if (fwrite(&gzheader, sizeof(struct gzheader), 1, stdout) != 1) { perror("stdout"); return 1; } } /* Now actually copy the data! */ for (;;) { len = fread(buf, 1, sizeof(buf), stdin); if (len < 0) { perror("stdin"); return 1; } if (len == 0) break; if (fwrite(buf, 1, len, stdout) != len) { perror("stdout"); return 1; } } /* I can't believe we're done! */ return 0; } 0; gzucb/compress/README 444 2000 51 25773 3543241763 7444 @(#)README 5.3 (Berkeley) 9/17/85 Compress version 4.0 improvements over 3.0: o compress() speedup (10-50%) by changing division hash to xor o decompress() speedup (5-10%) o Memory requirements reduced (3-30%) o Stack requirements reduced to less than 4kb o Removed 'Big+Fast' compress code (FBITS) because of compress speedup o Portability mods for Z8000 and PC/XT (but not zeus 3.2) o Default to 'quiet' mode o Unification of 'force' flags o Manual page overhaul o Portability enhancement for M_XENIX o Removed text on #else and #endif o Added "-V" switch to print version and options o Added #defines for SIGNED_COMPARE_SLOW o Added Makefile and "usermem" program o Removed all floating point computations o New programs: [deleted] The "usermem" script attempts to determine the maximum process size. Some editing of the script may be necessary (see the comments). [It should work fine on 4.3 bsd.] If you can't get it to work at all, just create file "USERMEM" containing the maximum process size in decimal. The following preprocessor symbols control the compilation of "compress.c": o USERMEM Maximum process memory on the system o SACREDMEM Amount to reserve for other proceses o SIGNED_COMPARE_SLOW Unsigned compare instructions are faster o NO_UCHAR Don't use "unsigned char" types o BITS Overrules default set by USERMEM-SACREDMEM o vax Generate inline assembler o interdata Defines SIGNED_COMPARE_SLOW o M_XENIX Makes arrays < 65536 bytes each o pdp11 BITS=12, NO_UCHAR o z8000 BITS=12 o pcxt BITS=12 o BSD4_2 Allow long filenames ( > 14 characters) & Call setlinebuf(stderr) The difference "usermem-sacredmem" determines the maximum BITS that can be specified with the "-b" flag. memory: at least BITS ------ -- ----- ---- 433,484 16 229,600 15 127,536 14 73,464 13 0 12 The default is BITS=16. The maximum bits can be overrulled by specifying "-DBITS=bits" at compilation time. WARNING: files compressed on a large machine with more bits than allowed by a version of compress on a smaller machine cannot be decompressed! Use the "-b12" flag to generate a file on a large machine that can be uncompressed on a 16-bit machine. The output of compress 4.0 is fully compatible with that of compress 3.0. In other words, the output of compress 4.0 may be fed into uncompress 3.0 or the output of compress 3.0 may be fed into uncompress 4.0. The output of compress 4.0 not compatible with that of compress 2.0. However, compress 4.0 still accepts the output of compress 2.0. To generate output that is compatible with compress 2.0, use the undocumented "-C" flag. -from mod.sources, submitted by vax135!petsd!joe (Joe Orost), 8/1/85 -------------------------------- Enclosed is compress version 3.0 with the following changes: 1. "Block" compression is performed. After the BITS run out, the compression ratio is checked every so often. If it is decreasing, the table is cleared and a new set of substrings are generated. This makes the output of compress 3.0 not compatible with that of compress 2.0. However, compress 3.0 still accepts the output of compress 2.0. To generate output that is compatible with compress 2.0, use the undocumented "-C" flag. 2. A quiet "-q" flag has been added for use by the news system. 3. The character chaining has been deleted and the program now uses hashing. This improves the speed of the program, especially during decompression. Other speed improvements have been made, such as using putc() instead of fwrite(). 4. A large table is used on large machines when a relatively small number of bits is specified. This saves much time when compressing for a 16-bit machine on a 32-bit virtual machine. Note that the speed improvement only occurs when the input file is > 30000 characters, and the -b BITS is less than or equal to the cutoff described below. Most of these changes were made by James A. Woods (ames!jaw). Thank you James! To compile compress: cc -O -DUSERMEM=usermem -o compress compress.c Where "usermem" is the amount of physical user memory available (in bytes). If any physical memory is to be reserved for other processes, put in "-DSACREDMEM sacredmem", where "sacredmem" is the amount to be reserved. The difference "usermem-sacredmem" determines the maximum BITS that can be specified, and the cutoff bits where the large+fast table is used. memory: at least BITS cutoff ------ -- ----- ---- ------ 4,718,592 16 13 2,621,440 16 12 1,572,864 16 11 1,048,576 16 10 631,808 16 -- 329,728 15 -- 178,176 14 -- 99,328 13 -- 0 12 -- The default memory size is 750,000 which gives a maximum BITS=16 and no large+fast table. The maximum bits can be overruled by specifying "-DBITS=bits" at compilation time. If your machine doesn't support unsigned characters, define "NO_UCHAR" when compiling. If your machine has "int" as 16-bits, define "SHORT_INT" when compiling. After compilation, move "compress" to a standard executable location, such as /usr/local. Then: cd /usr/local ln compress uncompress ln compress zcat On machines that have a fixed stack size (such as Perkin-Elmer), set the stack to at least 12kb. ("setstack compress 12" on Perkin-Elmer). Next, install the manual (compress.l). cp compress.l /usr/man/manl cd /usr/man/manl ln compress.l uncompress.l ln compress.l zcat.l - or - cp compress.l /usr/man/man1/compress.1 cd /usr/man/man1 ln compress.1 uncompress.1 ln compress.1 zcat.1 regards, petsd!joe Here is a note from the net: >From hplabs!pesnta!amd!turtlevax!ken Sat Jan 5 03:35:20 1985 Path: ames!hplabs!pesnta!amd!turtlevax!ken From: ken@turtlevax.UUCP (Ken Turkowski) Newsgroups: net.sources Subject: Re: Compress release 3.0 : sample Makefile Organization: CADLINC, Inc. @ Menlo Park, CA In the compress 3.0 source recently posted to mod.sources, there is a #define variable which can be set for optimum performance on a machine with a large amount of memory. A program (usermem) to calculate the useable amount of physical user memory is enclosed, as well as a sample 4.2bsd Vax Makefile for compress. Here is the README file from the previous version of compress (2.0): >Enclosed is compress.c version 2.0 with the following bugs fixed: > >1. The packed files produced by compress are different on different > machines and dependent on the vax sysgen option. > The bug was in the different byte/bit ordering on the > various machines. This has been fixed. > > This version is NOT compatible with the original vax posting > unless the '-DCOMPATIBLE' option is specified to the C > compiler. The original posting has a bug which I fixed, > causing incompatible files. I recommend you NOT to use this > option unless you already have a lot of packed files from > the original posting by thomas. >2. The exit status is not well defined (on some machines) causing the > scripts to fail. > The exit status is now 0,1 or 2 and is documented in > compress.l. >3. The function getopt() is not available in all C libraries. > The function getopt() is no longer referenced by the > program. >4. Error status is not being checked on the fwrite() and fflush() calls. > Fixed. > >The following enhancements have been made: > >1. Added facilities of "compact" into the compress program. "Pack", > "Unpack", and "Pcat" are no longer required (no longer supplied). >2. Installed work around for C compiler bug with "-O". >3. Added a magic number header (\037\235). Put the bits specified > in the file. >4. Added "-f" flag to force overwrite of output file. >5. Added "-c" flag and "zcat" program. 'ln compress zcat' after you > compile. >6. The 'uncompress' script has been deleted; simply > 'ln compress uncompress' after you compile and it will work. >7. Removed extra bit masking for machines that support unsigned > characters. If your machine doesn't support unsigned characters, > define "NO_UCHAR" when compiling. > >Compile "compress.c" with "-O -o compress" flags. Move "compress" to a >standard executable location, such as /usr/local. Then: > cd /usr/local > ln compress uncompress > ln compress zcat > >On machines that have a fixed stack size (such as Perkin-Elmer), set the >stack to at least 12kb. ("setstack compress 12" on Perkin-Elmer). > >Next, install the manual (compress.l). > cp compress.l /usr/man/manl - or - > cp compress.l /usr/man/man1/compress.1 > >Here is the README that I sent with my first posting: > >>Enclosed is a modified version of compress.c, along with scripts to make it >>run identically to pack(1), unpack(1), an pcat(1). Here is what I >>(petsd!joe) and a colleague (petsd!peora!srd) did: >> >>1. Removed VAX dependencies. >>2. Changed the struct to separate arrays; saves mucho memory. >>3. Did comparisons in unsigned, where possible. (Faster on Perkin-Elmer.) >>4. Sorted the character next chain and changed the search to stop >>prematurely. This saves a lot on the execution time when compressing. >> >>This version is totally compatible with the original version. Even though >>lint(1) -p has no complaints about compress.c, it won't run on a 16-bit >>machine, due to the size of the arrays. >> >>Here is the README file from the original author: >> >>>Well, with all this discussion about file compression (for news batching >>>in particular) going around, I decided to implement the text compression >>>algorithm described in the June Computer magazine. The author claimed >>>blinding speed and good compression ratios. It's certainly faster than >>>compact (but, then, what wouldn't be), but it's also the same speed as >>>pack, and gets better compression than both of them. On 350K bytes of >>>unix-wizards, compact took about 8 minutes of CPU, pack took about 80 >>>seconds, and compress (herein) also took 80 seconds. But, compact and >>>pack got about 30% compression, whereas compress got over 50%. So, I >>>decided I had something, and that others might be interested, too. >>> >>>As is probably true of compact and pack (although I haven't checked), >>>the byte order within a word is probably relevant here, but as long as >>>you stay on a single machine type, you should be ok. (Can anybody >>>elucidate on this?) There are a couple of asm's in the code (extv and >>>insv instructions), so anyone porting it to another machine will have to >>>deal with this anyway (and could probably make it compatible with Vax >>>byte order at the same time). Anyway, I've linted the code (both with >>>and without -p), so it should run elsewhere. Note the longs in the >>>code, you can take these out if you reduce BITS to <= 15. >>> >>>Have fun, and as always, if you make good enhancements, or bug fixes, >>>I'd like to see them. >>> >>>=Spencer (thomas@utah-20, {harpo,hplabs,arizona}!utah-cs!thomas) >> >> regards, >> joe >> >>-- >>Full-Name: Joseph M. Orost >>UUCP: ..!{decvax,ucbvax,ihnp4}!vax135!petsd!joe >>US Mail: MS 313; Perkin-Elmer; 106 Apple St; Tinton Falls, NJ 07724 >>Phone: (201) 870-5844 so itucb/compress/usermem.sh 444 2000 51 3440 3543244437 10541 #!/bin/sh - # # @(#)usermem.sh 5.4 (Berkeley) 9/17/85 # : This shell script snoops around to find the maximum amount of available : user memory. These variables need to be set only if there is no : /usr/adm/messages. KMEM, UNIX, and CLICKSIZE can be set on the command : line, if desired, e.g. UNIX=/unix KMEM=/dev/kmem # User needs read access to KMEM UNIX= # VAX CLICKSIZE=512, UNIX=/vmunix # PDP-11 CLICKSIZE=64, UNIX=/unix # CADLINC 68000 CLICKSIZE=4096, UNIX=/unix # Perkin-Elmer 3205 CLICKSIZE=4096, UNIX=/edition7 # Perkin-Elmer all others, CLICKSIZE=2048, UNIX=/edition7 CLICKSIZE=512 eval $* if test -n "$UNIX" then : User must have specified it already. elif test -r /vmunix then UNIX=/vmunix CLICKSIZE=512 # Probably VAX elif test -r /edition7 then UNIX=/edition7 CLICKSIZE=2048 # Perkin-Elmer: change to 4096 on a 3205 elif test -r /unix then UNIX=/unix # Could be anything fi SIZE=0 # messages: probably the most transportable if test -r /usr/adm/messages -a -s /usr/adm/messages then SIZE=`grep avail /usr/adm/messages | sed -n '$s/.*[ ]//p'` fi if test 0$SIZE -le 0 # no SIZE in /usr/adm/messages then if test -r $KMEM # Readable KMEM then if test -n "$UNIX" then SIZE=`echo maxmem/D | adb $UNIX $KMEM | sed -n '$s/.*[ ]//p'` if test 0$SIZE -le 0 then SIZE=`echo physmem/D | adb $UNIX $KMEM | sed -n '$s/.*[ ]//p'` fi SIZE=`expr 0$SIZE '*' $CLICKSIZE` fi fi fi case $UNIX in /vmunix) # Assume 4.2bsd: check for resource limits MAXSIZE=`csh -c limit | awk 'BEGIN { MAXSIZE = 1000000 } /datasize|memoryuse/ && NF == 3 { if ($2 < MAXSIZE) MAXSIZE = $2 } END { print MAXSIZE * 1000 }'` if test $MAXSIZE -lt $SIZE then SIZE=$MAXSIZE fi ;; esac if test 0$SIZE -le 0 then echo 0;exit 1 else echo $SIZE fi 0$SIZE -le 0 then SIZE=`echo physmem/D | adb $UNIX $KMEM | sed -n '$s/.*[ ]//p'` fi SIZE=`expr 0$SIZE '*' $CLICKSIZE` fi fi fi case $UNIX in /vmunix) # Assume 4.2bsd: check for resource limits Mÿÿÿÿ . ..vmunixnd usr lib ab tmp etc mnt bin devstandVnbsdV fs1 fs2fsrclebootd.d! pcs750.bin,fsrc1imYfsrc2imbootxs sys.cshrcs.logins 8.profilemta!$ pcs750.bina$homenfo' genvmunixaýh.rhosts